

CABO LAN F/UTP CAT. 5e 4Px24AWG DUPLA CAPA (P/ USO EXTERNO) - VULCANO

O **Cabo Lan VULCANO F/UTP Cat.5e 4Px24AWG** foi desenvolvido para transmissão de dados em alta velocidade, para instalação externa aérea e para a aplicação Gigabit Ethernet (IEEE 802,3E, 1000Mbps), 1000 Base-t, ATM 155 e 622mb/s e outros padrões compatíveis.

DESCRITIVO

O Cabo Lan VULCANO F/UTP Cat.5e 4Px24AWG é feito por condutores 100% cobre nú, isolados com PEAD, torcidos par a par e reunidos, formando 4 pares. Por final, é colocado por processo de extrusão, uma DUPLA CAPA, PVC na interna e PE na externa na cor preta.

DADOS CONSTRUTIVOS

F/UTP - Cabo blindado

Condutor - 100% Cobre Nú

Isolação - Termoplástico sólido (PEAD)

Pares - Os condutores são binados (torcidos), formando par nas cores azul/azul claro (par 1), branco/laranja (par 2), verde/verde claro (par 3) e marrom/marrom claro (par 4)

Núcleo - 4 pares trançados compostos por condutores sólidos de cobre nu isolados, reunidos enfaixados por uma fita aluminizada com passo adequado formando o núcleo do cabo blindado

Revestimento Externo - Dupla Capa: Características de não propagação a chama. Sua utilização é indicada para instalação externa aérea.

1ºcapa - PVC CMX retardante a chama;

2ªcapa - PE termoplástico na cor preta com aditivo anti-UV para uso externo;

Cat.5e - Características de transmissão até 100MHz

Especificações aplicáveis

ANSI - 568 - C.2

Requisitos Categoria 1 - Anatel

CARACTERISTICAS DIMENSIONAIS

Freq	Insertion Loss	NEXT	PSNEXT	ACR	PSACR	ELFEXT	PSELFEXT	RL
MHz	dB/100m	dB	dВ	dB/100m	dB/100m	dB/100m	dB/100m	dB/100m
1	2,0	65,3	62,3	63,3	60,3	63,8	60,8	20,0
4	4,1	56,3	53,3	52,2	49,2	51,7	48,7	23,0
8	5,8	51,8	48,8	46,0	43,0	45,7	42,7	24,5
10	6,5	50,3	47,3	43,8	40,8	43,8	40,8	25,0
16	8,2	47,3	44,3	39,1	36,1	39,7	36,7	25,0
20	9,3	45,8	42,8	36,5	33,5	37,7	34,7	25,0
25	10,4	44,3	41,3	33,9	30,9	35,8	23,8	24,3
31,25	11,7	42,9	39,9	31,2	28,2	33,9	30,9	23,6
62,5	17,0	38,4	35,4	21,4	18,4	27,8	24,8	21,5
100	22,0	35,3	32,3	13,3	10,3	23,8	20,8	20,1

Caracteristicas	Unidade	Valor
Resistência Elétrica em CC Máxima do Condutor a 20°C	Ω/1 km	93,8
Desequilibrio Resistivo Máximo	%	5
Capacitância Mútua Máxima 1kHz	nF/m	56
Desequilibrio Capacitivo Par x Terra Máxima a 1kHz	pF/m	3,3
Impedância Característica (1-100MHz)	Ω	100 + 15
Velocidade de Propagação	%	69
		570 @ 1 MHz
Propagation Delay	ns/100m	545 @ 1 MHz
		538 @ 1 MHz
Propagation delay skew (1-100MHz)	ms/100	45
Resistência de Isolamento	MΩ* km	10000
Tensão de Ruptura Mínima	N	400

