

Smarter. Greener. Together.

Industrial Automation Headquarters

Delta Electronics, Inc.

Taoyuan Technology Center No.18, Xinglong Rd., Taoyuan City, Taoyuan County 33068, Taiwan TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd.

Wujiang Plant 3 1688 Jiangxing East Road, Wujiang Economic Development Zone Wujiang City, Jiang Su Province, P.R.C. 215200 TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd. 238 Min-Xia Road, Pudong District,

238 Min-Xia Road, Pudong District,
ShangHai, P.R.C. 201209
TEL: 86-21-58635678 / FAX: 86-21-58630003

Delta Electronics (Japan), Inc.

Tokyo Office 2-1-14 Minato-ku Shibadaimon, Tokyo 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc.

1511, Byucksan Digital Valley 6-cha, Gasan-dong, Geumcheon-gu, Seoul, Korea, 153-704 TEL: 82-2-515-5303 / FAX: 82-2-515-5302

Delta Electronics Int'l (S) Pte Ltd.

4 Kaki Bukit Ave 1, #05-05, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd.

Plot No 43 Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL: 91-124-4874900 / FAX: 91-124-4874945

Americas

Delta Products Corporation (USA)

Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3800 / FAX: 1-919-767-8080

Delta Greentech (Brasil) S.A.

Sao Paulo Office Rua Itapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista 01332-000-São Paulo-SP-Brazil TEL: 55 11 3568-3855 / FAX: 55 11 3568-3865

Europe

Delta Electronics (Netherlands) B.V.

Eindhoven Office
De Witbogt 20, 5652 AG Eindhoven, The Netherlands
TEL: +31 (0)40-8003800 / FAX: +31 (0)40-8003898

AS-0249820-03

*We reserve the right to change the information in this manual without prior notice.

AS Series Module Manua

AS Series Module Manual

2018/02/09

AS Series Module Manual

Revision History

Version	Revision Date			
1 st	The first version was published.	2016/11/30		
2 nd	 Chapter 1: Add information concerning new models AS08AD-B and AS08AD-C. Chapter 2: Add information concerning new models AS08AD-B andAS08AD-C. Chapter 3: Update information concerning CR#23-24 and software new screenshots. Chapter 4: Update information concerning CR#35-54/CR#210-225 and software new screenshots. Chapter 5: Update information concerning CR#1-4/CR#210-217 and software new screenshots. Chapter 6: Update information concerning CR#210-217 and software new screenshots. Chapter 7: Update information concerning theoretical calibration and software new screenshots Chapter 8: Update information concerning new firmware 2.0. 	2017/07/07		
3 rd	 Chapter 1: Add information concerning new models AS06RTD-A and AS08TC-A and installation information updated in section 1.3.1. Chapter 5: Add information concerning new model AS06RTD-A. Chapter 6: Add information concerning new models AS08TC-A. 	2018/02/09		

AS Series Module Manual Table of Contents

Chapter 1 Introduction

1.1	Overview	1-2
1.2	Specifications	1-4
1.2	2.1 General Specifications	1-4
1.2	2.2 EMS Standards	1-5
	1.2.2.1 EMI	1-5
	1.2.2.2 EMS	1-5
	1.2.2.3 Conducted Immunity Test	1-5
1.3	Installation	1-6
1.3	3.1 Installing a Module	1-6
1.3	3.2 Installing a Removable Terminal Block	k 1-6
1.3	3.3 Changing a Module	1-9
1.3	3.4 Installing and Removing an Extension	n Card 1-10
1.3	3.5 Installing a Wiring Module	1-11
Chap	oter 2 Analog Input Module AS04/08AD	
2.1	Overview	2-2
2.1	1.1 Characteristics	2-2
2.2	Specifications and Functions	2-2
2.2	2.1 Specifications	2-2
2.2	2.2 Profile	2-4
2.2	2.3 Arrangement of Terminals	2-6
2.2	2.4 Control Registers	2-6
2.2	2.5 Functions	2-10
2.2	2.6 Wiring	2-20
2.2	2.7 LED Indicators	2-24
2.3	HWCONFIG in ISPSoft	2-24
2.3	3.1 Initial Setting	2-24
2.3	3.2 Checking the Version of a Module	2-27
2.3	3.3 Online Mode	2-28
2.3	3.4 Importing/Exporting a Parameter File	2-29
2.3	3.5 Parameters	2-30
2.4	Troubleshooting	2-33
2.4		2-33
2.4	1.2 Troubleshooting Procedure	2-34

Chapter 3 Analog Output Module ASO4DA

3.1 Ov	erview	3-2
3.1.1	Characteristics	3-2
3.2 Sp	ecifications and Functions	3-2
3.2.1	Specifications	3-2
3.2.2	Profile	3-4
3.2.3	Arrangement of Terminals	3-5
3.2.4	Control Registers	3-5
3.2.5	Functions	3-7
3.2.6	Wiring	3-10
3.2.7	LED Indicators	3-11
3.3 HV	VCONFIG in ISPSoft	3-12
3.3.1	Initial Setting	3-12
3.3.2	Checking the Version of a Module	3-15
3.3.3	Online Mode	3-16
3.3.4	Importing/Exporting a Parameter File	3-17
3.3.5	Parameters	3-18
3.4 Tro	oubleshooting	3-21
3.4.1	Error Codes	3-21
3.4.2	Troubleshooting Procedure	3-21
Chapter 4	4 Analog Input/Output Module AS06XA	
4.1 Ov	erview	4-2
4.1.1	Characteristics	
4.2 Sp	ecifications and Functions	4-3
4.2.1	Specifications	4-3
4.2.2	Profile	4-5
4.2.3	Arrangement of Terminals	4-7
4.2.4	Control Registers	4-7
4.2.5	Functions	4-13
4.2.6	Wiring	4-19
4.2.7	LED Indicators	4-22
4.3 HV	VCONFIG in ISPSoft	4-23
4.3.1	Initial Setting	4-23
4.3.2	Checking the Version of a Module	4-26
4.3.3	Online Mode	4-27
4.3.4	Importing/Exporting a Parameter File	4-28

4.3.5	Parameters 4-29
4.4 T	roubleshooting4-3
4.4.1	Error Codes4-33
4.4.2	Troubleshooting Procedure 4-34
Chapte	5 Temperature Measurement Module AS04/06RTD
5.1 Ov	erview5-2
5.1.1	Characteristics 5-2
5.1.2	Characteristics5-2
5.2 Sp	ecifications and Functions5-
5.2.1	Specifications 5-3
5.2.2	Profile5
5.2.3	Arrangement of Terminals5-
5.2.4	Control Registers 5-
5.2.5	Functions 5-10
5.2.6	Control Mode 5-20
5.2.7	Wiring 5-2
5.2.8	LED Indicators 5-2
5.3 HV	VCONFIG in ISPSoft5-2
5.3.1	Initial Setting 5-2
5.3.2	Checking the Version of a Module
5.3.3	Online Mode 5-3
5.3.4	Importing/Exporting a Parameter File
5.3.5	Parameters 5-33
5.4 Tr	oubleshooting5-36
5.4.1	Error Codes 5-30
5.4.2	Troubleshooting Procedure 5-3
5.4.3	State of the Connection 5-3
Chapte	6 Temperature Measurement Module AS04/08TC
6.1 C	Overview6-2
6.1.1	Characteristics6
6.2 S	pecifications and Functions6-4
6.2.1	Specifications 6
6.2.2	Profile6-

6.2.3	Arrangement of Terminals	6-6
6.2.4	AS04TC Control Registers	6-6
6.2.5	AS08TC Control Registers	6-9
6.2.6	Functions	6-15
6.2.7	Control Mode	6-21
6.2.8	Wiring	6-28
6.2.9	LED Indicators	6-29
6.3 H\	WCONFIG in ISPSoft	6-30
6.3.1	Initial Setting	6-30
6.3.2	Checking the Version of a Module	6-33
6.3.3	Online Mode	6-34
6.3.4	Importing/Exporting a Parameter File	6-35
6.3.5	Parameters	6-36
6.4 Tr	oubleshooting	6-39
6.4.1	Error Codes	6-39
6.4.2	Troubleshooting Procedure	6-40
Chapter	7 Load Cell Module ASO2LC	
7.1 O	verview	7-2
7.2 Sp	pecifications	7-2
7.2.1	Specifications	7-2
7.2.2	Profile	7-3
7.2.3	Arrangement of Terminals	7-4
7.2.4	Control Registers	7-4
7.2.5	Functions	7-11
7.2.6	Wiring	7-17
7.3 Ma	aking Adjustments	7-19
7.3.1	Steps to adjust points	7-19
7.3.2	Adjustment settings / LC Wizard	7-20
7.3.3	Adjustment settings / Instructional calibration	7-24
7.3.4	LED Indicators	7-27
7.4 H\	WCONFIG in ISPSoft	
7.4.1	Initial Setting	7-27
7.4.2	Checking the Version of a Module	7-30
7.4.3	Online Mode	7 21

7.4.4	Importing/Exporting a Parameter File	7-32
7.4.5	Parameters	7-33
7.5 T	Froubleshooting	7-36
7.5.1	Error Codes	7-36
7.5.2	Troubleshooting Procedure	7-36
Chapter	r 8 Serial Communication Module AS00SCM	
8.1 I	ntroduction	8-3
8.2 S	Specification, Function and Wiring	8-3
8.2.1	The functional specifications	8-3
8.2.2	Dimensions and Profile	8-4
8.2.3	Wiring	8-6
	2.3.1 AS00SCM-A Power Wiring	
8.2.	2.3.2 AS00SCM-A Communication Interface	8-7
8.3 C	COM mode	8-7
8.3.1	Modbus	8-8
8.3.2	UD Link	8-8
8.3.	3.2.1 TX Packets and RX Packets	8-9
8.3.	3.2.2 Command	8-11
	CANopen Mode	
8.3.	3.3.1 Features	8-12
8.3.	3.3.2 Corresponding Input / Output Device Range	8-12
8.4 R	RTU Mode	8-14
8.4.1	CANopen Mode (AS-FCOPM)	8-14
8.4.2	EtherNet/IP Mode (AS-FEN02)	8-17
8.4.3	Remote Module Setting	8-20
8.5 N	Normal Exchange Area	8-22
8.6 A	Application	8-23
8.6.1	Modbus	8-23
8.6.	o.1.1 Modbus Slave—Connection to Delta Products	8-24
8.6.	o.1.2 Modbus Master—Connection to Delta Products	8-26
8.6.2	UD Link	8-33
8.6.3	Remote IO Application (AS-FCOPM)	8-48
8.6.4	Remote IO Application (AS-FEN02)	8-55
8.6.5	Data Mapping through Modbus TCP (AS-FEN02)	8-57
8.6.6	Data Mapping through EtherNet/IP (AS-FEN02)	8-59
8.6.7	Data Mapping through Modbus TCP (AS-FEN02)	8-61

8.7	Error Codes	8-63
8.7	.1 Troubleshooting for Module AS00SCM-A as a Communication Module	.8-64
8	3.7.1.1 ERROR LED Indicators are ON	.8-64
8	3.7.1.2 ERROR LED Indicators Blinking Every 0.5 Seconds	.8-64
8.7	.2 Troubleshooting for Module AS00SCM-A as a Remote Module	.8-65
8	3.7.2.1 ERROR LED Indicators Are ON	.8-65
8	3.7.2.2 ERROR LED Indicators Blinking Every 0.5 Seconds	.8-65
8	3.7.2.3 ERROR LED Indicators Blinking Every 0.2 Seconds	.8-66
Chap	ter 9 Function Cards	
9.1	Introduction	9-2
9.2	Specification and Function	9-2
9.2	.1 AS-F232	9-2
9.2	.2 AS-F422	9-2
9.2	.3 AS-F485	9-2
9.2	.4 AS-F2AD	9-3
9.2	.5 AS-F2DA	9-3
9.2	.6 AS-FCOPM	9-4
9.2	.7 AS-FEN02	9-4
9.3	Profiles and Dimensions	9-5
9.3	.1 AS-F232	9-5
9.3	.2 AS-F422/AS-F485/AS-F2AD/AS-F2DA	9-5
9.3	.3 AS-FCOPM	9-5
9.3	.4 AS-FEN02	9-6
9.4	Wiring	9-7
9.4	.1 AS-F2AD	9-7
9.4	.2 AS-F2DA	9-8
9.5	HWCONFIG in ISPSoft	
9.5	.1 Initial Setting	9-8
Chap	ter 10 DeviceNet Master Scanner Module AS01DNET-A	
10.1	Introduction of AS01DNET-A	10-3
10.	1.1 Feature	.10-3
10.	1.2 Specifications	.10-3
10.2	Components of ASO1DNET-A	
10.		
10.	2.2 Components	
10.	2.3 Mode Toggle (RTU- Master/Slave)	.10-5

10.2.4	DeviceNet Connector	10-5
10.2.5	Address Switch	10-6
10.2.6	Function Switch	10-6
10.2.7	Digital Displayer	10-6
10.2 Day	sia a Niada Niada sa anta Garaga sa	10.7
	viceNet Network Communication	
10.3.1	Relationship between Transmission Distance and Baud Rate	
10.3.2	DeivceNet Network Topology Structure	
10.3.3 10.3.4	Choice and Purpose of a DeviceNet Terminal Resistor DeviceNet Network Supply Power	
10.3.4	Devicement Network Supply Power	10-12
10.4 Mas	ster /Slave Mode	10-13
10.4.1	Introduction of Master/Slave Mode	10-13
10.4.1	.1Scan List, Input Table and Output Table	10-13
10.4.2	Installation	10-14
10.4.2	1Connecting AS01DNET-A Module to AS series PLC	10-14
10.4.2	2.2Connecting the DeviceNet Communication Connector	10-14
10.4.3	IO Mapping for AS01DNET in AS PLC	10-15
10.4.3	.1Data Mapping between Modules and AS PLC	10-15
10.4.3	2.2Tables of Input Mapping and Output Mapping areas	10-16
10.4.4	Bit-strobe Command	10-17
10.4.4	.1Bit-strobe Work Principle	10-17
10.4.5	Network Node Status Display	10-18
10.4.5	.1Scan-List Node Status Indication	10-18
10.4.5	.2Module Status Indication	10-18
10.4.6	Setting the Time for Data Exchange between Master and Slaves	s10-18
10.4.7	Application Example Network Node Status Indication	10-19
10.4.7	.1.Constructing One DeviceNet Network	10-19
10.4.7	.2. Using DeviceNet Builder to Configure a DeviceNet Network	10-21
10.4.7	.3.DeviceNet Network Control	10-28
10.4.8	Sending Explicit Message through Ladder Diagram	10-29
10.4.8	1.1.Principle of Explicit Message Transmission	10-29
10.4.8	3.2.Explicit Message Transmission Instruction DNETRW	10-30
10.4.9	LED Indicators and Troubleshooting	10-36
10.4.9	2.1.NS LED	10-36
10.4.9	2.2.MS LED	10-36
10.4.9	2.3.Combination of MS LED and NS LED	10-37
10.4.9	.4.Digital Displayer	10-37
10.4.10	Master-Slave Mode Switch and 8 Baud Rates Setting via Softwar	e10-39
10.4.1	0.1.Setting AS01DNET-A to Slave Mode	10-39
10.4.1	0.2.Setting AS01DNET-A to Master Mode	10-42
10.4.1	0.3.Baud Rate Setting of When AS01DNET-A is in Slave Mode	10-45
10 4 1	0.4 Baud Rate Setting of When ASO1DNFT-A is in Master Mode	10-48

10.5	RTU	J Mode	10-50
10.5	5.1	Introduction of AS01DNET (in RTU Mode)	. 10-50
10.5	5.2	AS-Series Extension Modules Connectable to ASO1DNET (RTU)	. 10-51
10.5	5.3	Installation	. 10-52
10	0.5.3	.1.Installing AS01DNET (in RTU Mode)	. 10-52
10	0.5.3	.2.Connecting the Cable to DeviceNet Connector	. 10-53
10.5	5.4	Configuring AS01DNET (in RTU mode)	. 10-54
10	0.5.4	.1.Terms	. 10-54
10	0.5.4	.2.Introduction of Software	. 10-55
10	0.5.4	.3.DeviceNet Mapping Data	. 10-73
10	0.5.4	.4.Connecting AS01DNET (RTU) to the Network	. 10-81
10.5	5.5	Application Example	. 10-82
10	0.5.5	.1.Network Structure	. 10-82
10	0.5.5	.2.Using DeviceNet Builder to Configure the Network	. 10-82
10	0.5.5	.3. Using LD Program to Control the Entire Network	. 10-91
10.5	5.6	Error Diagnosis and Trouble Shooting	. 10-91
10	0.5.6	.1.Indicator Diagnosis	. 10-91
10	0.5.6	.2.Codes in Seven-Segment Displayer	. 10-92
10	0.5.6	.3.Status Word Diagnosis	. 10-94
10	0.5.6	.4.Software Diagnosis	. 10-95
10.6	Hov	v to Call DeviceNet Builder through ISPSoft (AS-Series PLC)	10-96

Chapter 1 Introduction

Table of Contents

1.1	Ove	rview	1-2
1.2	Spe	cifications	1-4
1.2	2.1	General Specifications	1-4
1.2	2.2	EMS Standards	1-5
	1.2.2.1	EMI	1-5
	1.2.2.2	2 EMS	1-5
	1.2.2.3	B Conducted Immunity Test	1-5
1.3	Inst	allation	1-6
1.3	3.1	Installing a Module	1-6
1.3	3.2	Installing a Removable Terminal Block	1-6
1.3	3.3	Changing a Module	1-9
1.3	3.4	Installing and Removing an Extension Card	1-10
1.3	3.5	Installing a Wiring Module	1-11

1.1 Overview

This manual introduces the use of special modules. The special modules are the analog input/output modules, temperature measurement modules, load cell modules, and network modules. They are described in the following table.

Classification	Model Name	Description
		4-channel analog input module
	A CO 4 A D. A	Hardware resolution: 16 bits
	AS04AD-A	0–10 V, 0/1–5 V, -5 to +5 V, -10 to +10 V, 0/4–20 mA, -20 to +20 mA
		Conversion time: 2 ms/channel
		8-channel analog input module
	4 C00 4 D. D.	Hardware resolution: 16 bits
	AS08AD-B	0–10 V, 0/1–5 V, -5 to +5 V, -10 to +10 V
		Conversion time: 2 ms/channel
		8-channel analog input module
	4 COO 4 D. O	Hardware resolution: 16 bits
	AS08AD-C	0/4–20 mA, -20 to +20 mA
Analog input/output		Conversion time: 2 ms/channel
module	AS04DA-A	4-channel analog input module
		Hardware resolution: 12 bits
		-10 to +10 V, 0–20 mA, 4–20 mA
		Conversion time: 2 ms/channel
		4-channel analog input module
	AS06XA-A	Hardware resolution: 16 bits
		0–10 V, 0/1–5 V, -5 to +5 V, -10 to +10 V, 0/4–20 mA, -20 to +20 mA
		Conversion time: 2 ms/channel
		2-channel analog input module
		Hardware resolution: 12 bits
		-10 to +10 V, 0–20 mA, 4–20 mA
		Conversion time: 2 ms/channel
Tomporeture	AS04RTD-A	4-channel, 2-wire/3-wire RTD
Temperature measurement		Sensor type: Pt100 / Ni100 / Pt1000 / Ni1000 / JPt100 / LG-Ni1000 /
module		Cu50 / Cu100 / 0–300 Ω / 0–3000 Ω input impedance
module		Resolution: 0.1°C/0.1°F (16 bits)

Classification	Model Name	Description
		2-channel analog input
	AS-F2DA	0–10 V, 4–20 mA (12 bits)
		Conversion time: 2 ms/channel

1.2 Specifications

1.2.1 General Specifications

ltem	Specifications
Operating temperature	-20 to +60°C
Storage temperature	-40 to +80°C
Operating humidity	5–95%
Operating humidity	No condensation
Ctorono humiditu	5–95%
Storage humidity	No condensation
Work environment	No corrosive gas
Installation location	In a control box
Pollution degree	2
EMC (electromagnetic compatibility)	Refer to Chapter 7 for more information.
	Tested with:
	5 Hz \leq f \leq 8.4 Hz, constant amplitude 3.5 mm
Vibration resistance	8.4 Hz ≤ f ≤ 150 Hz, constant acceleration 1 g
VISION FOOIGIAN	Duration of oscillation: 10 sweep cycles per axis on each direction of the three mutually perpendicular axes
	International Standard IEC 61131-2 & IEC 60068-2-6 (TEST Fc)
	Tested with:
	Half-sine wave
Shock resistance	Strength of shock: 15 g peak value, 11 ms duration
	Shock direction: The shocks on each direction per axis, of the three mutually perpendicular axes (for a total of 18 shocks)
	International Standard IEC 61131-2 & IEC 60068-2-27 (TEST Ea)
Safety	Conforms to IEC 61131-2, UL508

1.2.2 EMS Standards

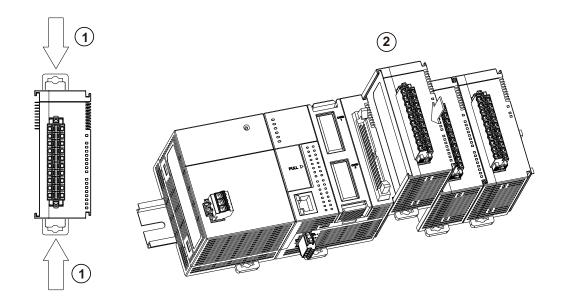
1.2.2.1 EMI

Port	Frequency Range	Level (Normative)	Reference Standard
Enclosure port	30-230 MHz	40 dB (μV/m) quasi-peak	
(radiated)			
(measured at a	230-1000 MHz	47 dB (μV/m) quasi-peak	
distance of 10 meters)			
	0.45.05.04.1-	79 dB (μV) quasi-peak	IEC 61000-6-4
AC power port	0.15-0.5 MHz	66 dB (μV) average	
(conducted)	0.5.20 MH-	73 dB (µV) quasi-peak	
	0.5-30 MHz	60 dB (μV) average	

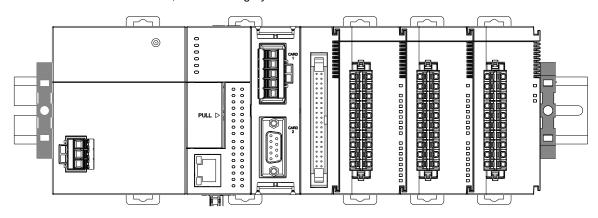
1.2.2.2 EMS

Environmental Phenomenon	Reference Standard	Test		Test Level
Electrostatic	IEC 61000-4-2	Cor	ntact	±4 kV
Discharge	IEC 61000-4-2	Air		±8 kV
Radio Frequency		80% AM,	2.0-2.7 GHz	1 V/m
Electromagnetic Field	IEC 61000-4-3	1 kHz	1.4-2.0 GHz	3 V/m
Amplitude Modulated	sinusoidal 80-1000 M		80-1000 MHz	10 V/m
Power Frequency	IEC 61000 4 9	60 Hz		30 A/m
Magnetic Field	IEC 61000-4-8	50 Hz		30 A/m

1.2.2.3 Conducted Immunity Test

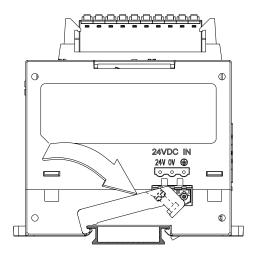

Environmental Phenomenon		Fast Transient Burst	High Energy Surge	Radio Frequency Interference
Reference Standard		IEC 61000-4-4	IEC 61000-4-5	IEC 61000-4-6
Interface/Port Specific Interface/Port		Test Level	Test Level	Test Level
Data communication	Shielded cable	1 kV	1 kV CM	10 V

Environmental Phenomenon		Fast Transient Burst	High Energy Surge	Radio Frequency Interference
Referen	ce Standard	IEC 61000-4-4	IEC 61000-4-5	IEC 61000-4-6
Interface/Port	Specific Interface/Port	Test Level	Test Level	Test Level
	Unshielded cable	1 kV	1 kV CM	10 V
	AC I/O (unahialdad)	2 14/	2 kV CM	10 V
	AC I/O (unshielded)	2 kV	1 kV DM	10 V
Digital and analog I/O	Analog or DC I/O (unshielded)	1 kV	1 kV CM	10 V
	All shielded lines (earth)	1 kV	1 kV CM	10 V
	AC power	2 kV	2 kV CM	40.1/
Equipment newer			1 kV DM	10 V
Equipment power	DC power	2 kV	0.5 kV CM	10 V
	DC power	2 NV	0.5 kV DM	10 V
	AC I/O and AC auxiliary	2 kV	2 kV CM	10 V
I/O power and	power	Z NV	1 kV DM	10 V
auxiliary power output	DC I/O and DC auxiliary	2 kV	0.5 kV CM	10 V
	power	Z K V	0.5 kV DM	IU V

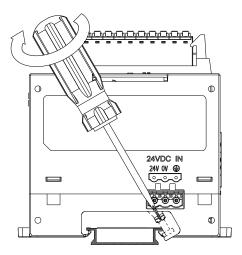

1.3 Installation

1.3.1 Installing a Module

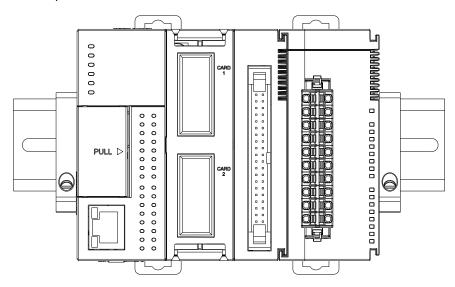
- 1. Press the clip rings if they are out as the image 1 shown. Push the module to the desire position until you hear a click to finish installation.
- 2. Link the I/O modules on the right side of the PLC and make sure they are hooked together. Push the modules into the DIN rail until you hear a click.
- 3. After you installed the module, fasten the screws on the modules to secure the module on the DIN rail.



If there is a vibration source near the installation site, install anti-vibration baffles on the sides of the AS Series modules for better stabilization, such as the gray baffles show below.

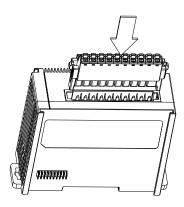


• Install the baffles:


1. Hook the baffle onto the DIN rail and press it down as the directional arrow shows below.

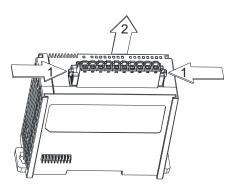
2. Use screws to secure the baffle.

3. The completed baffle installation is shown below.

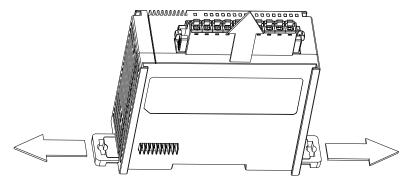


1.3.2 Installing a Removable Terminal Block

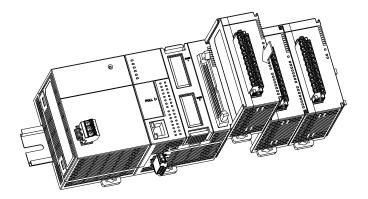
Install a removable terminal block on the module as illustrated below.


Installation

1. Level the terminal block at the printed circuit board, and press it into the module.

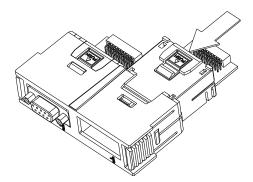

Removal

 Pull down the clip in the direction indicated by the arrow and then pull the terminal block up as illustrated below.

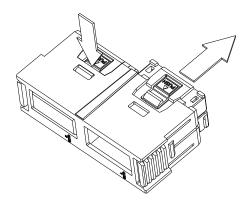


1.3.3 Changing a Module

1. Take the removable terminal block out of the module, and then pull the clip out from the DIN rail as shown below.


- 2. Remove the module.
- 3. Slide the new module in as shown below.

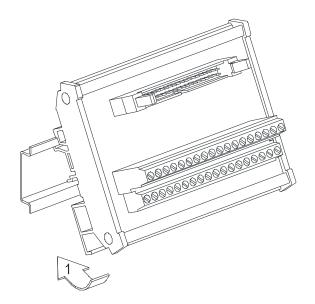
1.3.4 Installing and Removing an Extension Card


Installation

Push the extension card into the extension card slot until you hear a click.

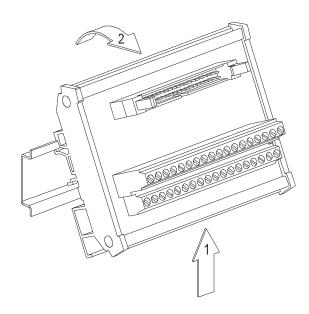
Removal

Press the tab labeled PUSH to release the extension card, and then remove the extension card.



1.3.5 Installing a Wiring Module

Connect a communication cable to the port on a CPU module, and make sure that the connector of the cable is properly seated in the port.


Installation

- 1. Firmly seat one side of the wiring module first.
- 2. Press the driver board in the direction indicated by arrow 1, and make sure that the groove is attached to the DIN rail.

Removal

- 1. Push the wiring module in the direction indicated by arrow 1.
- 2. Pull the wiring module in the direction indicated by arrow 2.

1

MEMO

Chapter 2 Analog Input Module AS04/08AD

Table of Contents

2.1 0	Overview	2-2
2.1.1	Characteristics	2-2
2.2 S	pecifications and Functions	2-2
2.2.1	Specifications	2-2
2.2.2	Profile	2-4
2.2.3	Arrangement of Terminals	2-6
2.2.4	Control Registers	2-6
2.2.5	Functions	2-10
2.2.6	Wiring	2-20
2.2.7	LED Indicators	2-24
2.3 H	IWCONFIG in ISPSoft	2-24
2.3.1	Initial Setting	2-24
2.3.2	Checking the Version of a Module	2-27
2.3.3	Online Mode	2-28
2.3.4	Importing/Exporting a Parameter File	2-29
2.3.5	Parameters	2-30
2.4 T	roubleshooting	2-33
2.4.1	Error Codes	2-33
2.4.2	Troubleshooting Procedure	2-34

2.1 Overview

This chapter describes the specifications for analog-to-digital modules, their operation, and their programming. In this chapter, "module" refers to the analog-to-digital modules AS04AD-A, AS08AD-B, and AS08AD-C.

2.1.1 Characteristics

(1) Select a module based on its practical application.

AS04AD-A: Has four channels. A channel can receive either voltage or current input.

AS08AD-B: Has eight channels. A channel can receive voltage input.

AS08AD-C: Has eight channels. A channel can receive current input.

(2) High-speed conversion

Analog signals are converted to digital signals at a rate of 25 ms per channel.

(3) High accuracy

Conversion accuracy: The error range for both voltage input and current input is ±0.2% at ambient temperature of 25° C. The number of voltage/current inputs that are averaged is 100.

(4) Use the utility software to configure the module.

The HWCONFIG utility software is built into ISPSoft. You can set modes and parameters directly in HWCONFIG without spending time writing programs to set registers to manage functions.

2.2 Specifications and Functions

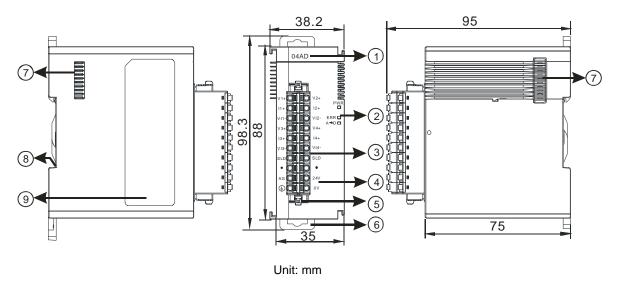
2.2.1 Specifications

Electrical specifications

Module Name AS04AD-A		AS08AD-B	AS08AD-C
Number of Inputs 4		8	8
Analog-to-Digital Conversion	Voltage input/Current input	Voltage input	Current input
Supply Voltage	24 VDC (20.4 VDC-28.8 VDC) (-15% to +20%)		
Connector Type	Removable terminal block		
Conversion Time	2ms/channel		

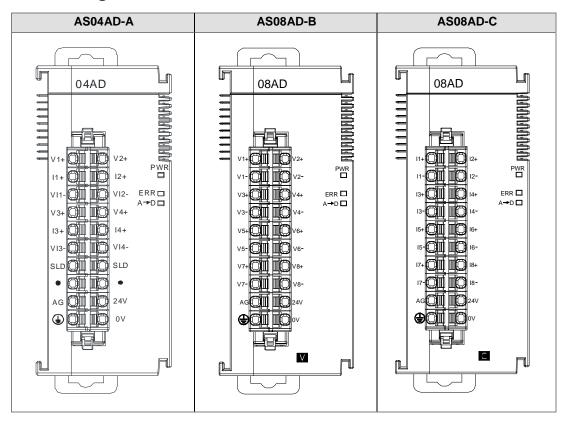
An analog circuit is isolated from a digital circuit by a digital integrated circuit/
optocoupler, but the analog channels are not isolated from one another.

Isolation between a digital circuit and a ground: 500 VDC
Isolation between an analog circuit and a ground: 500 VDC
Isolation between an analog circuit and a digital circuit: 500 VDC
Isolation between the 24 VDC and a ground: 500 VDC


• Functional specifications

Analog-to-Digital Conversion			Voltage Input		
Rated Input Range	-10 V to +10 V	0 V–10 V	±5 V	0 V–5 V	1 V–5 V
Digital Conversion Range	K-32000- K+32000	K0-K32000	K-32000– K+32000	K0-K32000	K0-K32000
Hardware Input	-10.1 V to	-0.1 V to	-5.05 V to	-0.05 V to	0.95 V-
Range	+10.1 V	+10.1 V	+5.05 V	+5.05 V	5.05 V
Error Rate (Room Temperature)			±0.2%		
Error Rate (Full Temperature Range)		±0. 5%			
Linearity Error (Room Temperature)			±0.02%		
Linearity Error (Full Temperature Range)			±0.06%		
Hardware Resolution			16 bits		
Input Impedance	≧1ΜΩ				
Absolute Input Range			±15 V		

Analog-to-Digital Conversion	Current Input			
Rated Input Range	±20 mA			
Digital Conversion Range	K-32000 to K+32000	K0–K32000	K0-K32000	
Hardware Input Range	-20.2 mA to +20.2 mA	-0.2 mA to +20.2 mA	3.8 mA-20.2 mA	
Error Rate (Room temperature)	±0.2%			
Error Rate (Full temperature Range)	±0.5%			
Linearity Error (Room Temperature) (Full Temperature Range)	±0.04%			
Linearity Error		±0.10%		
Hardware Resolution	16 bits			
Input Impedance	250 Ω			
Absolute Input Range	±32 mA			


2.2.2 Profile

AS04AD-A

Number	Name	Description	
1	Model Name	Model name of the module	
		Status of the power supply	
	POWER LED Indicator	ON: the power is on.	
		OFF: the power is off.	
		Error status of the module	
2	ERROR LED Indicator	ON: a serious error exists in the module.	
	ENTON ELD Indicator	OFF: the module is operating normally.	
		Blinking: A minor error exists in the module.	
	Analog to Digital Conversion Indicator	Analog-to-digital conversion status	
		Blinking: conversion is in process.	
	Conversion maleuter	OFF: conversion has stopped.	
3	Removable Terminal	Inputs are connected to sensors.	
	Block	Outputs are connected to loads to be driven.	
4	Arrangement of the	Arrangement of the terminals	
	Input/Output Terminals	, and a germent of the terminals	
5	Terminal Block Clip	For removing the terminal block	
6	DIN Rail Clip	Secures the module onto the DIN rail	
7	Module Connecting Set	Connects the modules	
8	Ground Clip		
9	Label	Nameplate	

2.2.3 Arrangement of Terminals

2.2.4 ASO4AD Control Registers

CR#	Name	Description	Defaults
0	Format Setup	0: integer format	0
	Format Setup	1: floating point format	U
1	Channel 1 mode setup	0: closed	
'	Chamiler i mode setup	1: -10 V to +10 V	
2	Channel 2 mode setup	2: 0 V–10 V	
2		3: -5 V to +5 V	
	Channel 3 mode setup	4: 0 V–5 V	1
3		5: 1 V–5 V	
	Channel 4 mode setup	6: 0 mA–20 mA	
4		7: 4 mA–20 mA	
		8: -20 mA to +20 mA	
5	Channel 1 offset	Range: -32768 to +32767	0
6	Channel 2 offset	gc. 52. 55 to .62. 6.	

CR#	Name	Description	Defaults
7	Channel 3 offset		
8	Channel 4 offset		
9	Channel 1 gain		
10	Channel 2 gain	Danger 20769 to 120767	1000
11	Channel 3 gain	Range: -32768 to +32767	1000
12	Channel 4 gain		
13	Channel 1 average times		
14	Channel 2 average times	B 4 400	40
15	Channel 3 average times	- Range: 1–100	10
16	Channel 4 average times		
17	Channel 1 filter average percentage		
18	Channel 2 filter average percentage	Range: 0–3 Unit: ±10%	
19	Channel 3 filter average percentage	1: ±10% 2: ±20%	1
20	Channel 4 filter average percentage	- 3: ±30%	
21	Channel sampling cycle (sampling/integration time)	0: 2 ms 1: 4 ms 2: 10 ms 3: 15 ms 4: 20 ms 5: 30 ms 6: 40 ms 7: 50 ms 8: 60 ms 9: 70 ms 10: 80 ms 11: 90 ms 12: 100 ms	0

CR#	Name	Description	Defaults
		0: open channel alarm	
		1: close channel alarm	
		bit0: channel 1	
		bit1: channel 2	
		bit2: channel 3	
22	Channel Alarm Setup	bit3: channel 4	0
		0: warning	
		1: alarm	
		bit8: error in the power supply	
		bit9: error in the module hardware	
		bit10: error in calibration	
23	The minimum scale range		-10
24	for channel 1		-10
25	The minimum scale range		-10
26	for channel 2		-10
27	The minimum scale range	The analog input mode of a channel has a	40
28	for channel 3	corresponding digital range. For example, if the analog	-10
29	The minimum scale range	range is -10 V to +10 V and the digital range is -10.0 to	40
30	for channel 4	+10.0, the analog values -10 V to +10 V correspond to	-10
31	The maximum scale range	the digital values -10.0 to +10.0. If the analog input mode of a channel is 4 mA-20 mA, the minimum scale	40
32	for channel 1	range is 4 mA and the maximum scale range is 20 mA.	10
33	The maximum scale range	When the format is integer, however, the scale range	10
34	for channel 2	is invalid.	10
35	The maximum scale range		40
36	for channel 3		10
37	The maximum scale range		40
38	for channel 4		10

CR#	Name	Description	Defaults
		Instructions for peak values	
		16#0101: record the peak value again for channel 1	
		16#0102: record the peak value again for channel 2	
		16#0104: record the peak value again for channel 3	
		16#0108: record the peak value again for channel 4	
		16#010F: record the peak values again for channels	
		1–4	
		16#0201: enable recording for channel 1	
201	Instruction Set	16#0202: enable recording for channel 2	
201	instruction Set	16#0204: enable recording for channel 3	0
		16#0208: enable recording for channel 4	
		16#020F: enable recording for channels 1–4	
		16#0211: disable recording for channel 1	
		16#0212: disable recording for channel 2	
		16#0214: disable recording for channel 3	
		16#0218: disable recording for channel 4	
		16#021F: disable recording for channels 1-4	
		16#0502: restore default settings	
210	The maximum peak value		0
210	for channel 1		
211	The maximum peak value		0
	for channel 2	Integer format; the maximum peak value for analog	
212	The maximum peak value	inputs	0
	for channel 3		
213	The maximum peak value		0
	for channel 4		
214	The minimum peak value for channel 1		0
215	The minimum peak value for channel 2	Integer format: the minimum peak value for engles	0
	The minimum peak value for	Integer format; the minimum peak value for analog inputs	
216	channel 3		0
	The minimum peak value for		
217	channel 4		0

CR#	Name	Description	Defaults
222	The time to record for channel 1		1
223	The time to record for channel 2	Unit: 10 ms Range: 1–100	1
224	The time to record for channel 3	Time to record the digital value for the channel	1
225	The time to record for channel 4		1
240	The number of records for channel 1		0
241	The number of records for channel 2	Dongo, 0, 500, display the gurrent records	0
242	The number of records for channel 3	Range: 0–500, display the current records	0
243	The number of records for channel 4		0
4000– 4499	Records for channel 1	500 records for channel 1	
4500– 4999	Records for channel 2	500 records for channel 2	
5000– 5499	Records for channel 3	500 records for channel 3	
5500– 5999	Records for channel 4	500 records for channel 4	

2.2.5 AS08AD Control Registers

CR#	Name	Description	Defaults
0	Format Setup	0: integer format	0
		1: floating point format	0
1	Channel 1 mode setup	AS08AD-B	
		0: closed	4
2	Channel 2 mode setup	1: -10 V to +10 V	1
		2: 0 V–10 V	

CR#	Name	Description	Defaults
		3: -5 V to +5 V	
3	Channel 3 mode setup	4: 0 V–5 V	
		5: 1 V–5 V	
4	Channel 4 mode setup		
_		AS08AD-C	
5	Channel 5 mode setup	0: closed	
_		1: -20 mA to +20 mA	
6	Channel 6 mode setup	2: 0 mA–20 mA	
_		3: 4 mA–20 mA	
7	Channel 7 mode setup		
8	Channel 8 mode setup		
9	Channel 1 offset		
10	Channel 2 offset		
11	Channel 3 offset		
12	Channel 4 offset	Day 200 200 42 + 200 707	
13	Channel 5 offset	Range: -32768 to +32767	0
14	Channel 6 offset		
15	Channel 7 offset		
16	Channel 8 offset		
17	Channel 1 gain		
18	Channel 2 gain		
19	Channel 3 gain		1000
20	Channel 4 gain	Range: -32768 to +32767	
21	Channel 5 gain	Nailge32700 to +32707	1000
22	Channel 6 gain		
23	Channel 7 gain		
24	Channel 8 gain		
25	Channel 1 average times		
26	Channel 2 average times	Range: 1–100	10
27	Channel 3 average times		

CR#	Name	Description	Defaults
28	Channel 4 average times		
29	Channel 5 average times		
30	Channel 6 average times		
31	Channel 7 average times		
32	Channel 8 average times		
33	Channel 1 filter average percentage		
34	Channel 2 filter average percentage		
35	Channel 3 filter average percentage		
36	Channel 4 filter average percentage	Range: 0–3 Unit: ±10% 1: ±10%	1
37	Channel 5 filter average percentage	2: ±20% 3: ±30%	I
38	Channel 6 filter average percentage	0. 2007/	
39	Channel 7 filter average percentage		
40	Channel 8 filter average percentage		
		0: 2 ms	
	Channel Sampling Cycle	1: 4 ms	
		2: 10 ms	
		3: 15 ms	
		4: 20 ms	
41	(Sampling/Integration Time)	5: 30 ms	0
		6: 40 ms	
		7: 50 ms	
		8: 60 ms	
		9: 70 ms	
		10: 80 ms	

CR#	Name	Description	Defaults
		11: 90 ms	
		12: 100 ms	
		0: open channel alarm	
		1: close channel alarm	
		bit0: channel 1	
		bit1: channel 2	
		bit2: channel 3	
		bit3: channel 4	
		bit4: channel 5	
42	Channel Alarm Setup	bit5: channel 6	0
42	Charmer Alaim Setup	bit6: channel 7	0
		bit7: channel 8	
		0: warning	
		1: alarm	
		bit8: error in the power supply	
		bit9: error in the module hardware	
		bit10: error in calibration	
43	The minimum scale range	The analog input mode of a channel has a	
44	for channel 1	corresponding digital range. For example, if the analog	
45	The minimum scale range	range is -10 V to +10 V and the digital range is -10.0 to	
46	for channel 2	+10.0, the analog values -10 V to +10 V correspond to	
47	The minimum scale range	the digital values -10.0 to +10.0. If the analog input	
48	for channel 3	mode of a channel is 4 mA-20 mA, the minimum scale	
49	The minimum scale range	range is 4 mA and the maximum scale range is 20 mA.	
50	for channel 4	When the format is integer, however, the scale range	-10
51	The minimum scale range	is invalid.	
52	for channel 5	Data storage:	
53	The minimum scale range	Convert floating-point format to hexadecimal numbers	
54	for channel 6	(-10.0000 = 16#C1200000)	
55		-10.0000 the minimum scale range for channel 1 (CR43/CR44)	
	The minimum scale range for channel 7	CR43 = 16#0000, CR44 = 16#C120	
56	IOI CHAIIIEI I		

CR#	Name	Description	Defaults
57	The minimum scale range		
58	for channel 8		
59	The maximum scale range		
60	for channel 1		
61	The maximum scale range		
62	for channel 2		
63	The maximum scale range		
64	for channel 3		
65	The maximum scale range		
66	for channel 4		10
67	The maximum scale range		10
68	for channel 5		
69	The maximum scale range		
70	for channel 6		
71	The maximum scale range		
72	for channel 7		
73	The maximum scale range		
74	for channel 8		
		Instructions for peak values	
		16#0101: record the peak value again for channel 1	
		16#0102: record the peak value again for channel 2	
	Instruction Set	16#0104: record the peak value again for channel 3	
		16#0108: record the peak value again for channel 4	
		16#010F: record the peak values again for channels	
201		1-4	0
		16#0201: enable recording for channel 1	
		16#0202: enable recording for channel 2	
		16#0204: enable recording for channel 3	
		16#0208: enable recording for channel 4	
		16#020F: enable recording for channels 1-4	
		16#0211: disable recording for channel 1	
		16#0212: disable recording for channel 2	

CR#	Name	Description	Defaults
		16#0214: disable recording for channel 3	
		16#0218: disable recording for channel 4	
		16#021F: disable recording for channels 1–4	
		16#0502: restore default settings	
210	The maximum peak value for channel 1		0
211	The maximum peak value for channel 2		0
212	The maximum peak value for channel 3		0
213	The maximum peak value for channel 4	Integer format; the maximum peak value for analog	0
214	The maximum peak value for channel 5	·	
215	The maximum peak value for channel 6		0
216	The maximum peak value for channel 7		0
217	The maximum peak value for channel 8		0
218	The minimum peak value for channel 1		0
219	The minimum peak value for channel 2		0
220	The minimum peak value for channel 3		0
221	The minimum peak value for channel 4	Integer format; the minimum peak value for analog inputs	0
222	The minimum peak value for channel 5		0
223	The minimum peak value for channel 6		0
224	The minimum peak value for channel 7		0

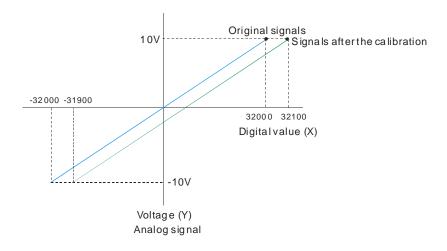
CR#	Name	Description	Defaults
225	The minimum peak value for channel 8		0
222	The time to record for channel 1		1
223	The time to record for channel 2	Unit: 10 ms	1
224	The time to record for channel 3	Range: 1–100 Time to record the digital value for the channels	1
225	The time to record for channel 4		1

2.2.6 Functions

Item	Function	Description
1	Enable/Disable a	1. Enable or disable a channel.
'	Channel	2. If a channel is disabled, the total conversion time decreases.
2	Calibration	Calibrate a linear curve.
3	Average	Conversion values are averaged and filtered.
4	Disconnection	Disconnection detection only operates when the analog range is 4
4	Detection	mA–20 mA or 1 V–5 V.
	Channel Detect and	If an input signal exceeds the range of inputs that the hardware can
5	Alarm	receive, the module produces an alarm or a warning. You can disable
		this function.
6	The Limit Detections	Save the maximum/minimum values for channels.
	for Channels	Save the maximum values for sharmore.
	Records for	
7	Channels	Save the analog curves for channels
'	(Applicable for	dave the analog ourves for charmers
	AS04AD)	
8	Scale Range	When the format is floating-point, you can set the scale range.

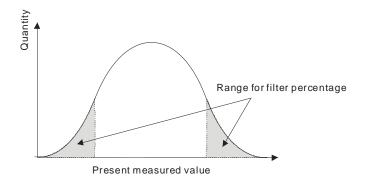
1. Enable/Disable a channel

An analog signal is converted into a digital signal at a rate of 2 ms per channel. The total conversion time is 2 ms X (the number of channels). If a channel is not used, you can disable it to decrease the total conversion time.


2. Calibration

To make a curve meet specific needs, calibrate the curve by changing the offset and the gain. The calibration range depends on the range of inputs that the hardware can receive. The formula is:

$$Output = \frac{(Input \times Gain)}{1000} + Offset$$

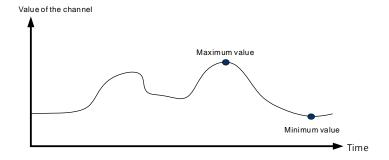

Example:

A channel receives voltage inputs between -10.0 V to +10.0 V. The gain is 1000, and the offset is 0. The corresponding value for the original signal -10.0 V to +10.0 V is -32000 to +32000. If you change the offset to -100, the calibrated value for the original signal -10.0 V to +10.0 V becomes -31900 to +32100.

3. Average

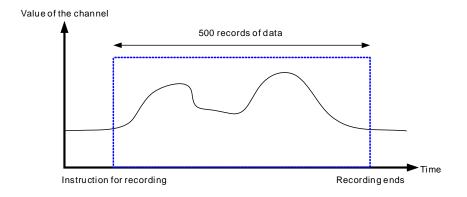
You can set the average value between 1–100. It is a steady value obtained from the sum of the recorded values. If the recorded values include an acute pulse due to unavoidable external factors, however, you may observe violent changes in the average value. Use the filtering function to exclude acute pulses from the sum-up and equalization, so that the computed average value is not affected by the acute recorded values. Set the filter percentage to the range 0–3, where the unit is 10%. If you set the filter range to 0, the system sums up all the recorded values and divides them to obtain the average value, but if you set the filter range to 1, for example, the system excludes the bottom 10% and top 10% of the values and averages only the remaining values to obtain the average value. For instantance, set the average value to 100 and set the filter percentage to 3. When there are 100 pieces of data collected, the system arranges the collected data according to their values from large to small and then excludes the bottom 30% and top 30% of the values (60 pieces of data) and averages only the remaining values (40 pieces of data) to obtain the average value.

4. Disconnection detection

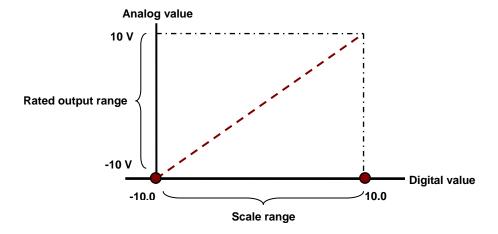

Disconnection detection only operates when the analog range is 4–20 mA or 1–5 V. If a module that can receive inputs between 4–20 mA or from 1–5 V is disconnected, the input signal exceeds the range of allowable inputs, so the module produces an alarm or a warning.

5. Channel detection

If an input signal exceeds the allowable range of inputs, an error message appears. You can disable this function so that the module does not produce an alarm or a warning when the input signal exceeds the input range.


6. Limit detections for channels

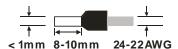
This function saves the maximum and minimum values for channels so that you can determine the peak to peak values.


7. Records for channels (applicable for AS04AD)

Record the input values of the cyclic sampling for each channel. The system saves up to 500 data points and the recording time is 10 ms.

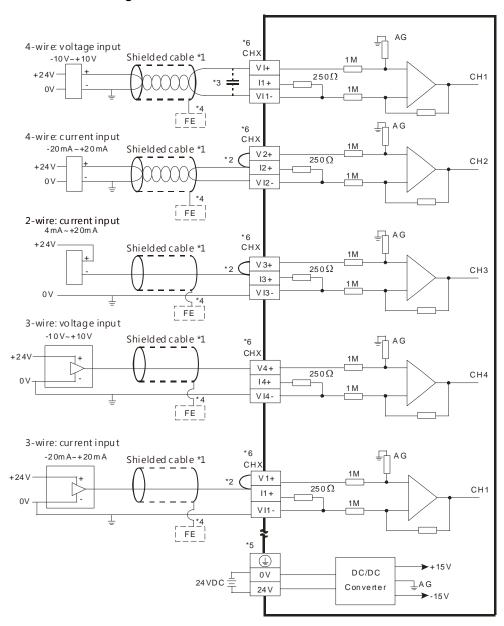
8. Scale range

You can set the scale range when the format is floating-point. The analog output mode of a channel has a corresponding digital range. Digital values correspond to analog outputs sent by the module. For example, if the analog range is -10 V to +10 V, the digital range is -10.0 to +10.0, the HSP scale is 10.0, and the LSP scale is -10.0. The digital values -10.0 to +10.0 correspond to the analog values -10 V to +10 V, as the example below shows.

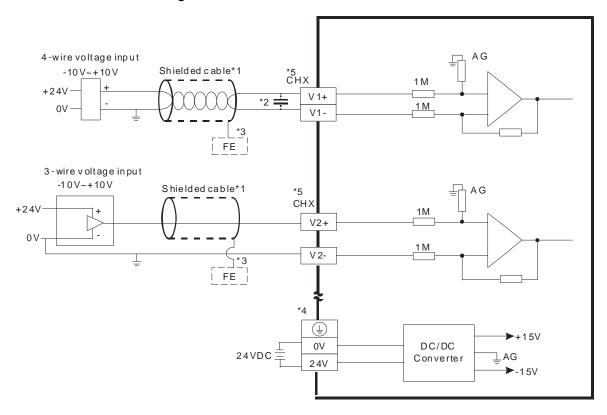


2.2.7 Wiring

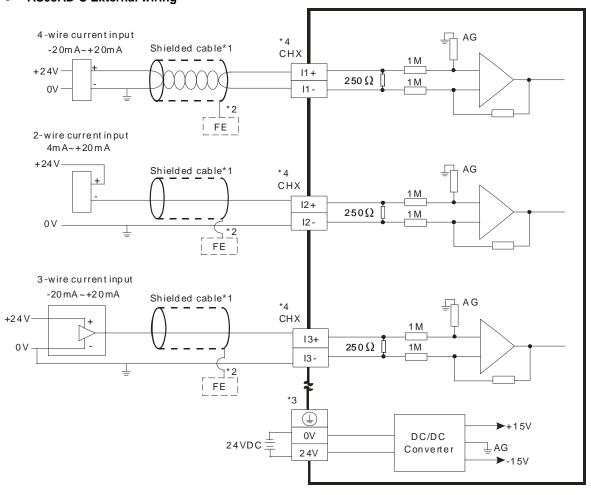
Precautions


To ensure the analog-to-digital module functions well and reliably, the external wiring must prevent noise. Before you install the cables, follow the precautions below.

- (1) To prevent a surge and induction, the AC cable and the input signal cables that are connected to the module must be separate cables.
- (2) Do not install the cable near a main circuit, a high-voltage cable, or a cable connected to a load that is not a PLC. In addition, the cable must not be bound to a main circuit, a high-voltage cable, or a cable connected to a load which is not a PLC.
- (3) Ground shielded cables and hermetically sealed cables separately.
- (4) Terminals with insulation sleeves cannot be arranged as a terminal block, so you should cover the terminals with insulation tubes.
- (5) Use single-core cables or twin-core cables in a diameter of 24 AWG–22 AWG with pin-type connectors smaller than 1 mm. Use only copper conducting wires that can resist temperatures above 60° C-75° C.


- (6) Notes on two-wire, three-wire, and four-wire connections:
 - Two-wire connection/three-wire connection (passive transducer): connect the transducer and the analog input module to the same power circuit.
 - Four-wire connection (active transducer): the transducer uses an independent power supply so
 do not connect it to the same power circuit as the analog input module.
- (7) Note: use cables with the same length (less than 200 m) and use wire resistance of less than 100 ohm.

AS04AD-A External wiring


- *1. Use shielded cables to isolate the analog input signal cable from other power cables.
- *2. If the module is connected to a current signal, the terminals Vn and In+ (n=1-4) must be short-circuited.
- *3. If variability in the input voltage results in interference within the wiring, connect the module to a capacitor with a capacitance between 0.1–0.47 µF and a working voltage of 25 V.
- *4. Connect the shielded cable to the terminal FE.
- *5. Connect the terminal to the ground terminal.
- *6. Every channel can operate with the wiring presented above.

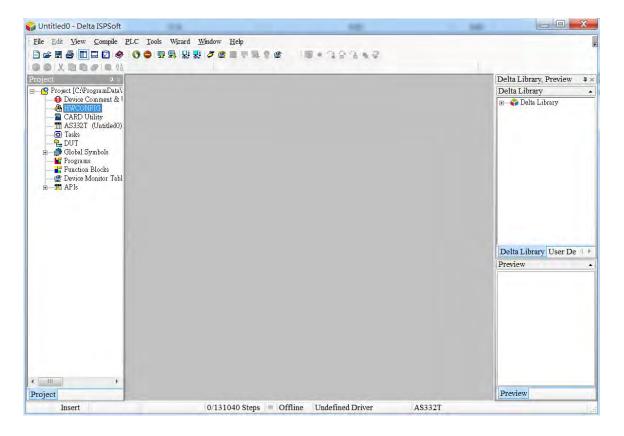
AS08AD-B External wiring

- *1. Use shielded cables to isolate the analog input signal cable from other power cables.
- *2. If variability in the input voltage results in interference within the wiring, connect the module to a capacitor with a capacitance between 0.1–0.47 µF and a working voltage of 25 V.
- *3. Connect the shielded cable to the terminal FE.
- *4. Connect the terminal $\begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100$
- *5. Every channel can operate with the wiring presented above.

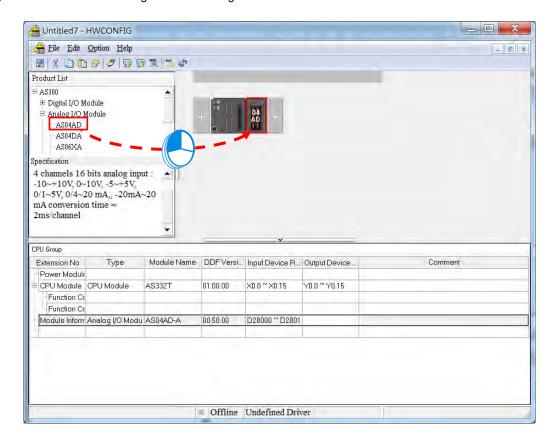
AS08AD-C External wiring

- *1. Use shielded cables to isolate the analog input signal cable from other power cables.
- *2. Connect the shielded cable to the terminal FE.
- *3. Connect the terminal $\stackrel{\textcircled{}}{=}$ to the ground terminal.
- *4. Every channel can operate with the wiring presented above.

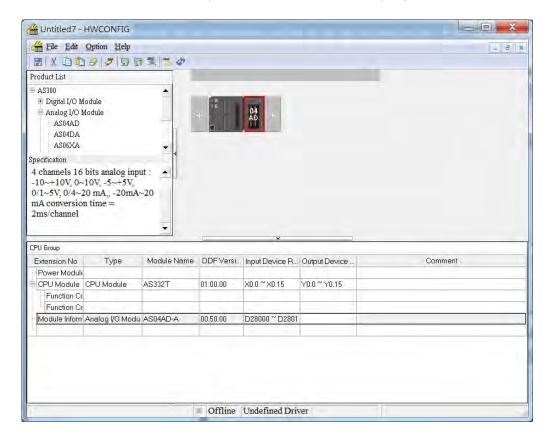
2.2.8 LED Indicators

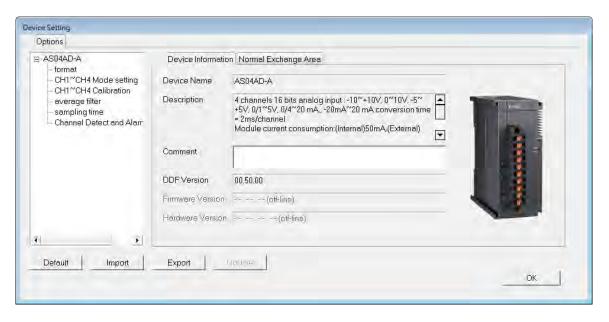

Number	Name	Description	
		Operating status of the module	
1	RUN LED Indicator	ON: the module is running.	
		OFF: the module is not running.	
		Error status of the module	
2	ERROR LED	ON: a serious error exists in the module.	
2	Indicator	OFF: the module is operating normally.	
		Blink: a minor error exists in the module.	
	Analog to Digital	Analog-to-digital conversion status	
3	Conversion	Blinking: conversion is in process.	
	Indicator	OFF: conversion has stopped.	

2.3 HWCONFIG in ISPSoft

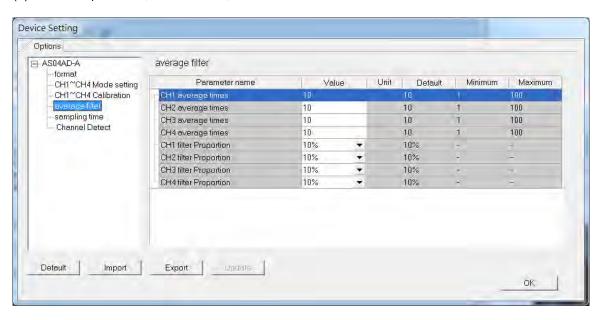

The following example uses the AS04AD-A module.

2.3.1 Initial Setting

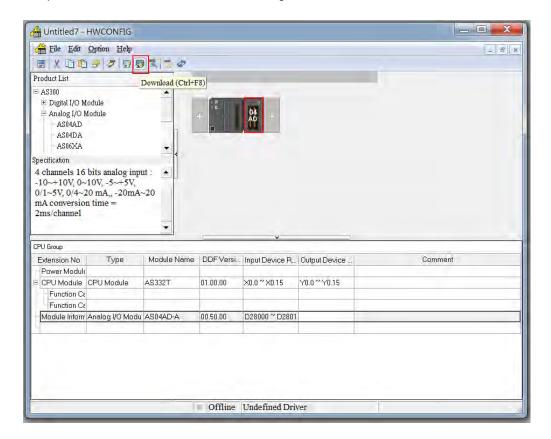

(1) Start ISPSoft and double-click HWCONFIG.



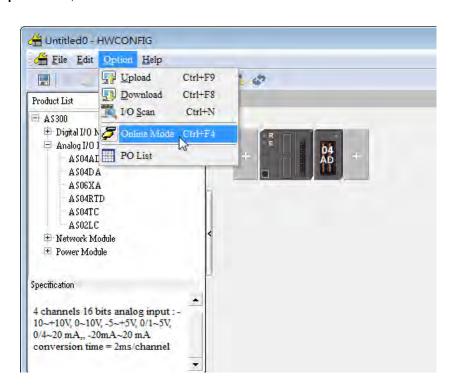
(2) Select a module and drag it to the working area.



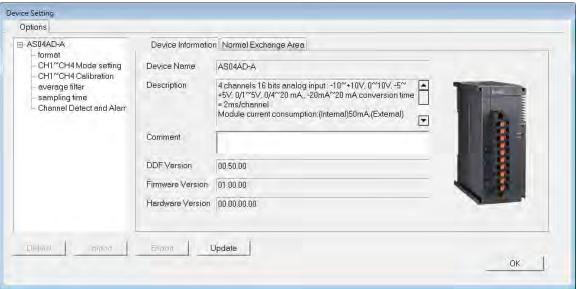
(3) Double-click the module in the working area to open the Device Setting page.



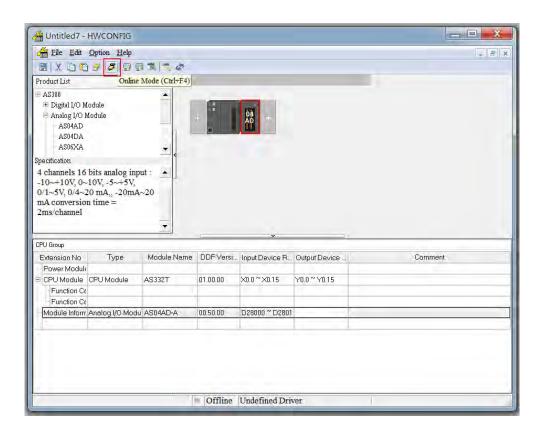
(4) Choose a parameter, set the values, and click **OK**.

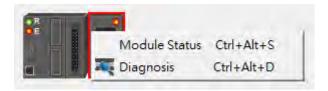


(5) Click **Download** on the toolbar to download the parameters. Note that you cannot download the parameters while the CPU module is running.

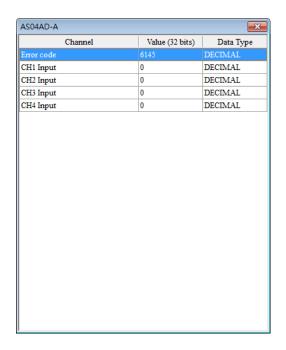

2.3.2 Checking the Version of a Module

(1) On the Option menu, click Online Mode.

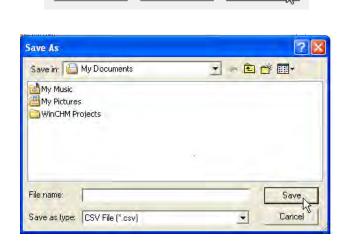

(2) Double-click the module to open the Device Setting page. The versions of both the firmware and the hardware are displayed.



2.3.3 Online Mode


(1) Click Online Mode on the toolbar.

(2) Right-click the module and click Module Status.


(3) View the module status.

2.3.4 Importing/Exporting a Parameter File

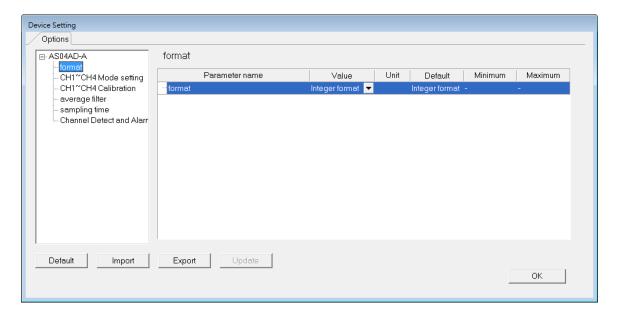
Default

(1) Click **Export** in the Device Settings dialog box to save the current parameters as a CSV file (.csv).

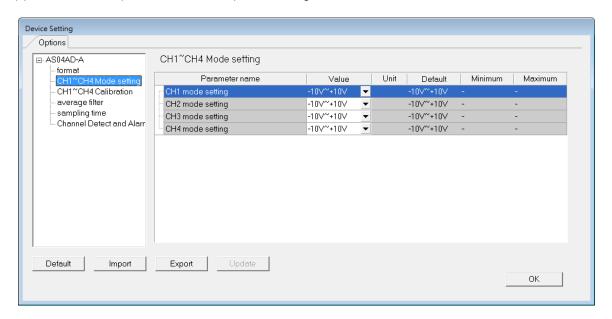


Import

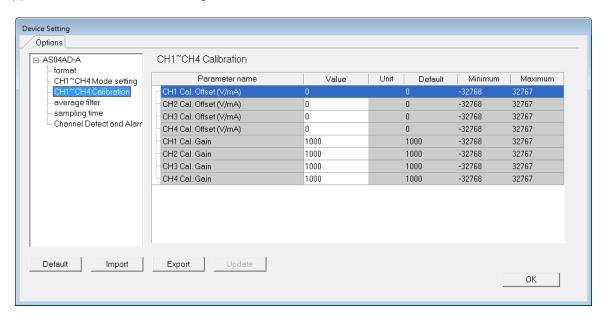
Export 1

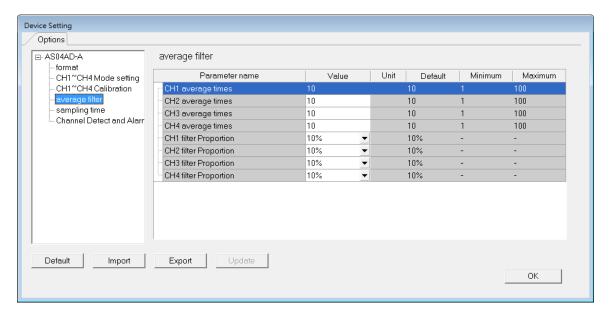


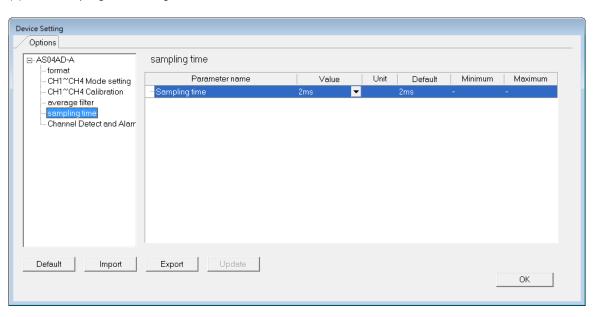
(2) Click Import in the Device Settings dialog box and select a CSV file to import saved parameters.

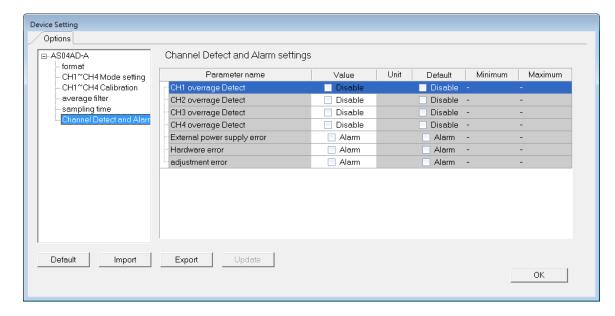


2.3.5 Parameters


(1) The input formats of the channels


(2) The CH1-CH4 (channel 1-channel 4) mode settings


(3) The CH1-CH4 calibration settings


(4) The average filter settings

(5) The sampling time settings

(6) The channel detection settings

2.4 Troubleshooting

2.4.1 Error Codes

Error	Description	A → D LED	ERROR LED
Code		Indicator	Indicator
16#1605	Hardware failure	OFF	ON
16#1607	The external voltage is abnormal.	OFF	ON
16#1608	The factory calibration is abnormal.	OFF	ON
16#1801	The external voltage is abnormal.	OFF	Blinking
16#1802	Hardware failure	OFF	Blinking
16#1804	The factory calibration is abnormal.	OFF	Blinking
16#1808	The signal received by channel 1 exceeds the range of inputs		
10#1000	that the hardware can receive.		
16#1809	The signal received by channel 2 exceeds the range of inputs that		
10#1003	the hardware can receive.	Run: blinking	Blinking
16#180A	The signal received by channel 3 exceeds the range of inputs that	Stop: OFF	Dillikilig
10#100/	the hardware can receive.		
16#180B	The signal received by channel 4 exceeds the range of inputs that		
10#1000	the hardware can receive.		

Error Code	Description	A → D LED Indicator	ERROR LED Indicator
16#180C	The signal received by channel 5 exceeds the range of inputs that the hardware can receive.		
16#180D	The signal received by channel 6 exceeds the range of inputs that the hardware can receive.		
16#180E	The signal received by channel 7 exceeds the range of inputs that the hardware can receive.		
16#180F	The signal received by channel 8 exceeds the range of inputs that the hardware can receive.		

2.4.2 Troubleshooting Procedure

Description	Procedure	
The external voltage is abnormal	Ensure the external 24 V power supply to the module is	
The external voltage is abnormal.	functioning normally.	
Hardware failure	Return the module to the factory for repair.	
Internal error		
The factory calibration is abnormal.	Contact the factory.	
The signal received by channel 1 exceeds the	Check the signal received by channel 1	
range of inputs that the hardware can receive.	Check the signal received by Charmer 1	
The signal received by channel 2 exceeds the	Check the signal received by channel 2.	
range of inputs that the hardware can receive.	Oncor the signal received by Chairner 2.	
The signal received by channel 3 exceeds the	Check the signal received by channel 3.	
range of inputs that the hardware can receive.	, , , , , , , , , , , , , , , , , , ,	
The signal received by channel 4 exceeds the	Check the signal received by channel 4.	
range of inputs that the hardware can receive.	g.a	
The signal received by channel 5 exceeds the	Check the signal received by channel 5.	
range of inputs that the hardware can receive.	Check the digital received by charmer 5.	
The signal received by channel 6 exceeds the	Check the signal received by channel 6.	
range of inputs that the hardware can receive.	Check the signal received by Chamber 6.	
The signal received by channel 7 exceeds the	Check the signal received by channel 7.	
range of inputs that the hardware can receive.	Check the signal received by Challing 1.	
The signal received by channel 8 exceeds the	Check the signal received by channel 8.	
range of inputs that the hardware can receive.	Cricok the signal received by charmer c.	

Chapter 3 Analog Output Module ASO4DA

Table of Contents

3.1 O)verview	
3.1.1	Characteristics	3-2
3.2 S	pecifications and Functions	3-2
3.2.1	Specifications	3-2
3.2.2	Profile	3-4
3.2.3	Arrangement of Terminals	3-5
3.2.4	Control Registers	3-5
3.2.5	Functions	3-7
3.2.6	Wiring	3-10
3.2.7	LED Indicators	3-11
3.3 H	IWCONFIG in ISPSoft	3-12
3.3.1	Initial Setting	3-12
3.3.2	Checking the Version of a Module	3-15
3.3.3	Online Mode	3-16
3.3.4	Importing/Exporting a Parameter File	3-17
3.3.5	Parameters	3-18
3.4 T	roubleshooting	3-21
3.4.1	Error Codes	3-21
3 / 2	Troubleshooting Procedure	3-21

3.1 Overview

An analog output module receives four 12-bit blocks of digital data from a CPU module. The module converts the digital data into analog signals (voltage or current).

3.1.1 Characteristics

(1) Select a module based on its practical application.

AS04DA-A: Has four channels. A channel can send either voltage or current output.

(2) High-speed conversion

Digital signals are converted to analog signals at a rate of 2 ms per channel.

(3) High accuracy

Conversion accuracy: The error range for both voltage output and current output is ±0.2% at ambient temperature of 25° C.

(4) Use the utility software to configure the module.

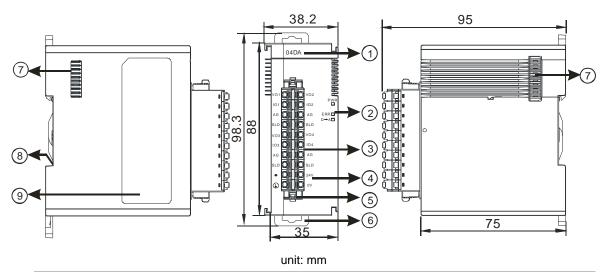
The HWCONFIG utility software is built into ISPSoft. You can set modes and parameters directly in HWCONFIG without spending time writing programs to set registers to manage functions.

3.2 Specifications and Functions

3.2.1 Specifications

• Electrical specifications

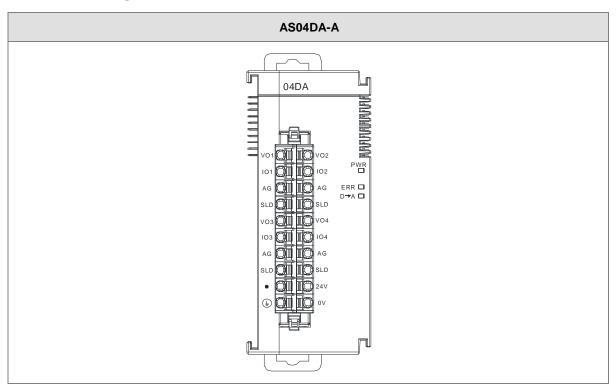
Electrical specific			
Module Name	AS04DA-A		
Number of Outputs	4		
Analog-to-Digital Conversion	Voltage input/Current input		
Supply Voltage	24 VDC (20.4 VDC-28.8 VDC) (-15% to +20%)		
Connector Type	Removable terminal block		
Conversion Time	2 ms/channel		
Isolation	An analog circuit is isolated from a digital circuit by a digital integrated circuit/ optocoupler, but the analog channels are not isolated from one another. Isolation between a digital circuit and a ground: 500 VDC Isolation between an analog circuit and a ground: 500 VDC Isolation between an analog circuit and a digital circuit: 500 VDC		
	Isolation between the 24 VDC and a ground: 500 VDC		


Functional specifications

Analog-to-Digital Conversion	Voltage Output				
Rated Output Range	±10 V	0 V~10 V	±5 V	0 V~5 V	1 V~5 V
Hardware Output Range	-10.1V~10.1V	-0.1V~10.1V	-5.05V~5.05V	-0.05V~5.05V	0.95V~5.05V
Error Rate (Room Temperature)	±0.2%				
Error Rate (Full Temperature Range)	±0. 5%				
Linearity error (Room Temperature)	±0.05%				
Linearity error (Full Temperature Range)			±0.05%		
Hardware Resolution			12 bits		
Output Impedance	1 kΩ-2 MΩ at ±10 V and 0 V-10 V				
Absolute Output Range		≥500 Ω at 1 V–5 V			

Analog-to-Digital Conversion	Current Output		
Rated Output Range	0 mA-20 mA 4 mA-20 mA		
Hardware Output Range	-0.2 mA to +20.2 mA 3.8 mA-20.2 mA		
Error Rate (Room Temperature)		±0.2%	
Error Rate (Full Temperature Range)	±0.5%		
Linearity Error (Room temperature)	±0.03%		
Linearity error (Full Temperature Range)	±0.03%		

Analog-to-Digital Conversion	Current Output
Hardware Resolution	12 bits
Output Impedance	≦550 Ω


3.2.2 Profile

Number Name Description Model Name Model name of the module Status of the power supply POWER LED Indicator ON: the power is on. OFF: the power is off. Error status of the module ON: a serious error exists in the module. 2 **ERROR LED Indicator** OFF: the module is operating normally. Blinking: a minor error exists in the module. Analog-to-digital conversion status Analog to Digital Blinking: conversion is in process. Conversion Indicator OFF: conversion has stopped. Removable Terminal 3 Outputs are connected to loads to be driven. Block Arrangement of the 4 Arrangement of the terminals Input/Output Terminals 5 Terminal Block Clip For removing the terminal block

Number	Name	Description
6	DIN Rail Clip	Secures the module onto the DIN rail
7	Module Connecting Set	Connects the modules
8	Ground Clip	
9	Label	Nameplate

3.2.3 Arrangement of Terminals

3.2.4 Control Registers

CR#	Name	Description	Defaults
0	Format Setup	0: integer format	0
		1: floating-point format	
1	Channel 1 mode setup	0: closed	
		1: -10 V to +10 V (default)	
2	Channel 2 mode setup	2: 0 V–10 V	1
		3: -5 V to +5 V	'
3	Channel 3 mode setup	4: 0 V–5 V	
		5: 1 V–5 V	

CR#	Name	Description	Defaults
4	Channel 4 mode setup	6: 0 mA-20 mA	
4		7: 4 mA–20 mA	
5	Channel 1 offset		0
6	Channel 2 offset	Denves 20700 to 120707	
7	Channel 3 offset	Range: -32768 to +32767	
8	Channel 4 offset		
9	Channel 1 gain		1000
10	Channel 2 gain	D	
11	Channel 3 gain	Range: -32768 to +32767	
12	Channel 4 gain		
13	Retaining an output sent by channel 1	0: when the PLC stops, the value of the analog output is reset to 0.1: when the PLC stops, the value of the analog output is retained.	0
14	Retaining an output sent by channel 2		
15	Retaining an output sent by channel 3		
16	Retaining an output sent by channel 4		
17	Refreshing the time for an output sent by channel 1	Range: 10–3200 (100 ms–32 s) Unit: 10 ms Any value less than 10 is processed as 0. Any value larger than 3200 is processed as 3200. Set the value to 0 to disable this function.	
18	Refreshing the time for an output sent by channel 2		0
19	Refreshing the time for an output sent by channel 3		
20	Refreshing the time for an output sent by channel 4		
21	The minimum scale range	The analog input mode for a channel has a	-10
22	for channel 1	corresponding digital range. For example, if the analog	
23	The minimum scale range	range is -10 V to +10 V and the digital range is -10.0 to +10.0, the analog values -10 V to +10 V correspond to the digital values -10.0 to +10.0. If the analog input mode of a channel is 4 mA–20 mA, the minimum scale range is 4 mA and the maximum scale range is 20 mA.	10
24	for channel 2		-10
25	The minimum scale range		10
26	for channel 3		-10
27	The minimum scale range	When the format is integer, however, the scale range is	-10

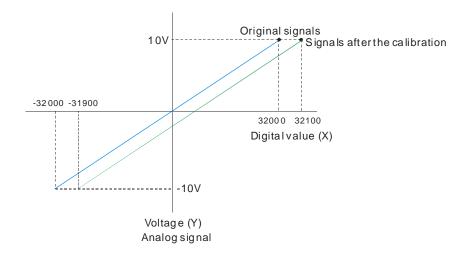
CR#	Name	Description	Defaults
28	for channel 4	invalid.	
29	The maximum scale range		10
30	for channel 1		10
31	The maximum scale range		10
32	for channel 2		10
33	The maximum scale range		10
34	for channel 3		10
35	The maximum scale range		10
36	for channel 4		10
	Channel alarm setup	0: warning	
37		1: alarm	
		bit0: error in the power supply	0
		bit1: error in the module hardware	
		bit2: error in calibration	

3.2.5 Functions

Item	Function	Description
1	Enable/Disable a	1. Enable or disable a channel.
	Channel	2. If a channel is disabled, the total conversion time decreases.
2	Calibration	Calibrate a linear curve.
3	Retain an Output	When a module stops running, the system can retain the signal sent by
		the module.
4	Refresh Time for an	Refresh the analog output value according to the value of the fixed
	Output	slope.
5	Scale Range	You can set the scale range when the format is floating-point.

1. Enable/Disable a Channel

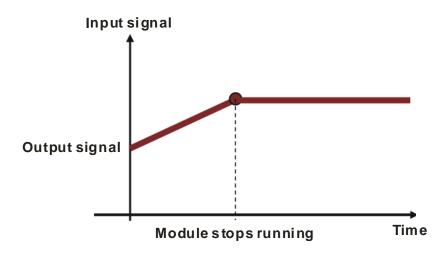
An analog signal is converted into a digital signal at a rate of 2 ms per channel. The total conversion time is 2 ms X (the number of channels). If a channel is not used, you can disable it to decrease the total conversion time.

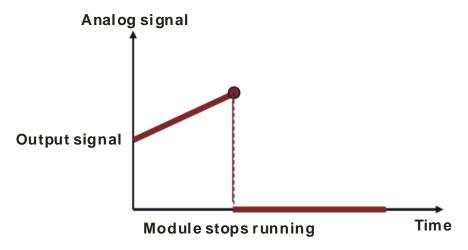

2. Calibration

To make a curve meet specific needs, calibrate the curve by changing the offset and the gain. The calibration range depends on the range of inputs that the hardware can receive. The formula is:

$$Output = \frac{(Input \times Gain)}{1000} + Offset$$

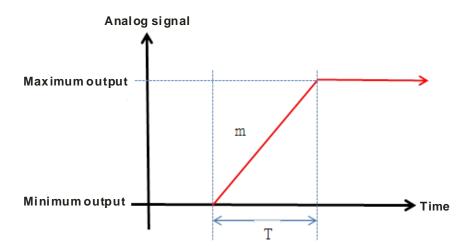
Example:


A channel receives voltage inputs between -10.0 V to +10.0 V. The gain is 1000, and the offset is 0. The corresponding value for the original signal -10.0 V to +10.0 V is -32000 to +32000. If you change the offset to -100, the calibrated value for the original signal -10.0 V to +10.0 V becomes -31900 to +32100.

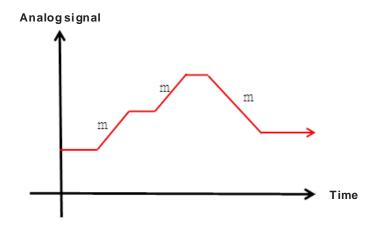

3. Retain an Output

When a module stops running, the system can retain the signal sent by the module.

The output is retained:

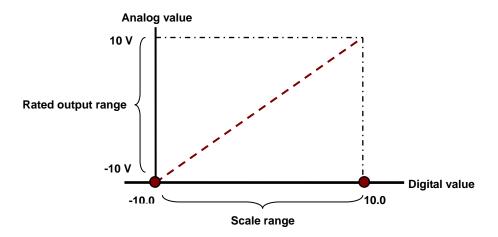


The output is not retained:



3. Refresh time for an Output

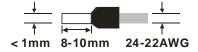
Set the refresh time for an output and the system updates the value of the slope (m) accordingly.



When the analog output signal changes, the system updates the value of the analog output according to the value set in the slope, as shown in the image below.

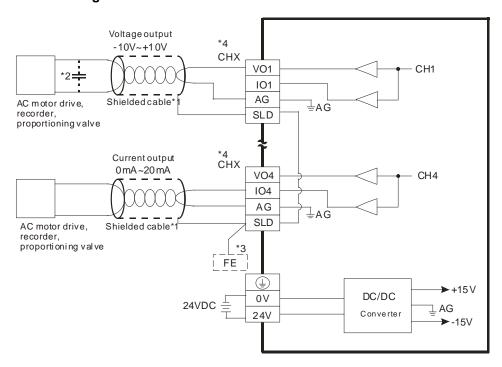
4. Scale Range

You can set the scale range when the format is floating-point. The analog output mode of a channel has a corresponding digital range. Digital values correspond to analog outputs sent by the module. For example, if the analog range is -10 V to +10 V, the digital range is -10.0 to +10.0, the HSP scale is 10.0, and the LSP scale is -10.0. The digital values -10.0 to +10.0 correspond to the analog values -10 V to +10 V, as the example below shows.



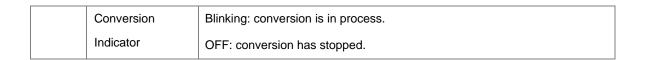
3.2.6 Wiring

Precautions


To ensure the digital-to-analog module functions well and reliably, the external wiring must prevent noise.

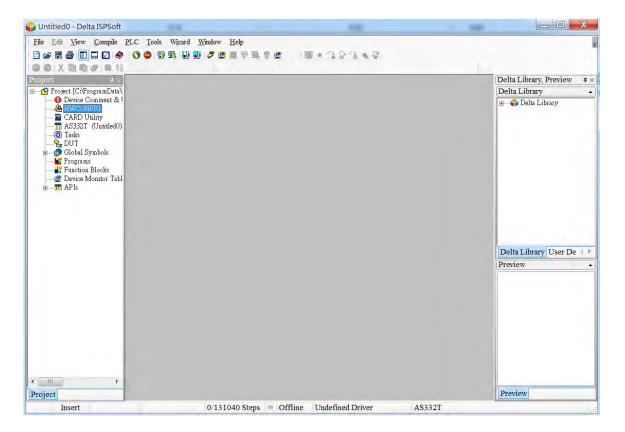
- (1) To prevent a surge and induction, the AC cable and the output signal cables that are connected to the AS04DA-A must be separate cables.
- (2) Do not install or bound the cable to a main circuit, a high-voltage cable, or a cable connected to a load that is not a PLC.
- (3) Ground shielded cables and hermetically sealed cables separately.
- (4) Terminals with insulation sleeves cannot be arranged as a terminal block, so you should cover the terminals with insulation tubes.
- (5) Connect 24 to 22 AWG (1 mm) wires to the input/output terminals. The plastic jackets that are removed from the cables should be 8 mm to 10 mm long. The specifications for the terminals and the wiring of the terminals are shown below. Use only copper leads that can resist temperatures above 60° C /75° C.

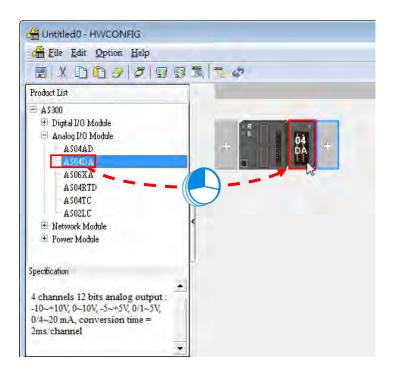
(6) Note: use cables with the same length (less than 200 m) and use wire resistance of less than 100 ohm.


External wiring

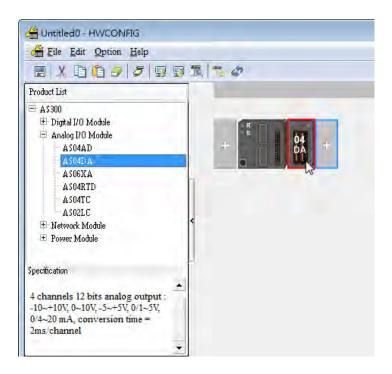
- *1. Use shielded cables to isolate the analog input signal cable from other power cables.
- *2. If variability in the input voltage results in interference within the wiring, connect the module to a capacitor having a capacitance between 0.1–0.47 μF and a working voltage of 25 V.
- *3. Connect the SLD to FE, and connect both the FE and the terminal to the ground terminal.
- *4. Every channel can operate with the wiring presented above.

3.2.7 LED Indicators

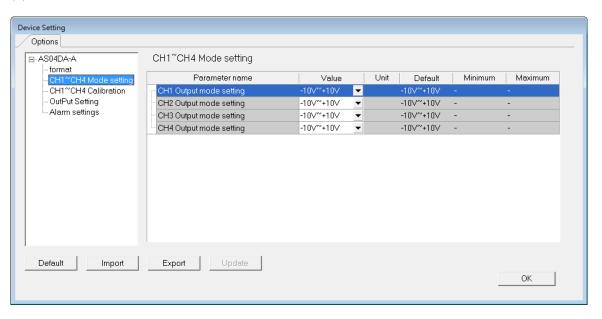

Number	Name	Description
1		Operating status of the module
	RUN LED Indicator	ON: the module is running.
		OFF: the module is not running.
		Error status of the module
2	ERROR LED	ON: a serious error exists in the module.
	Indicator	OFF: the module is operating normally.
		Blink: a minor error exists in the module.
3	Digital to Analog	Digital-to-analog conversion status


3.3 HWCONFIG in ISPSoft

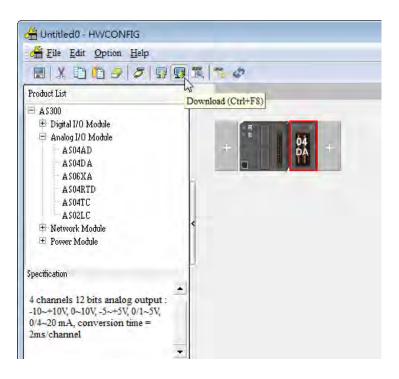
3.3.1 Initial Setting


(1) Start ISPSoft and double-click HWCONFIG.

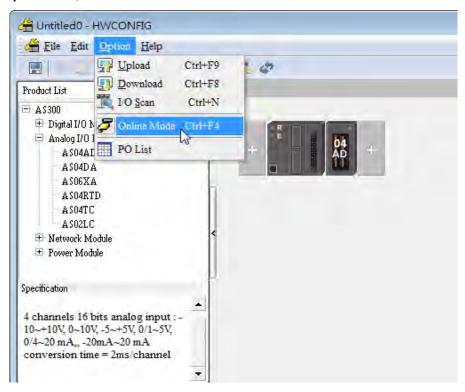
(2) Select a module and drag it to the working area.



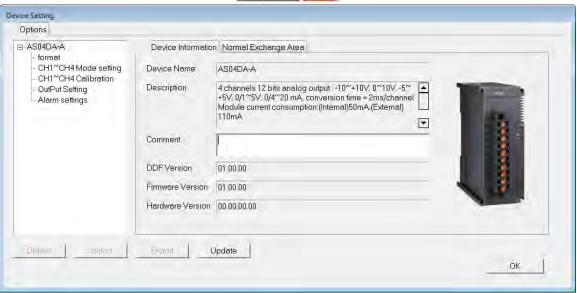
(3) Double-click the module in the working area to open the Device Setting page.



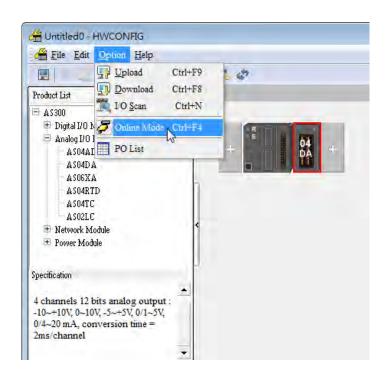
(4) Choose a parameter, set the values, and click **OK**.

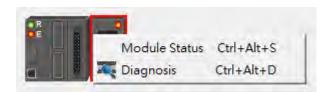


(5) Click **Download** on the toolbar to download the parameters. Note you cannot download the parameters cannot be downloaded.

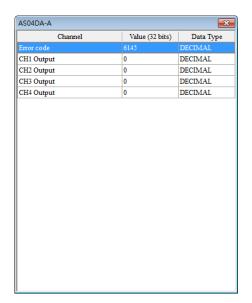

3.3.2 Checking the Version of a Module

(1) On the Option menu, click Online Mode.

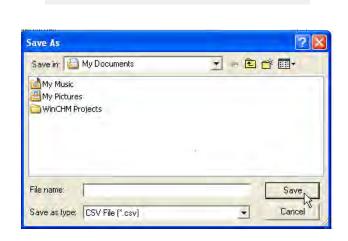

(2) Double-click the module to open the Device Setting page. The versions of both the firmware and the hardware are displayed.



3.3.3 Online Mode


(1) On the Option menu, click Online Mode.

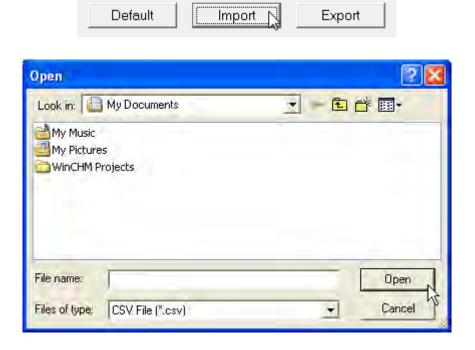
(2) Right-click the module and click on Module Status.


(3) View the module status.

3.3.4 Importing/Exporting a Parameter File

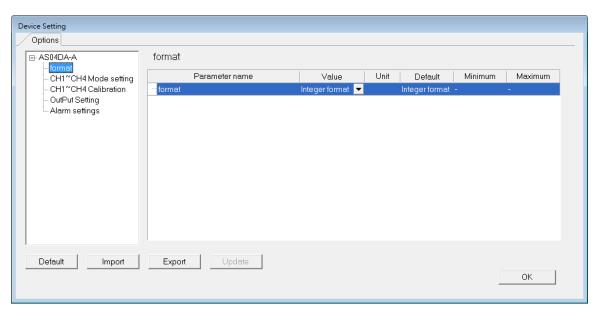
Default

(1) Click **Export** in the Device Settings dialog box to save the current parameters as a CSV file (.csv).

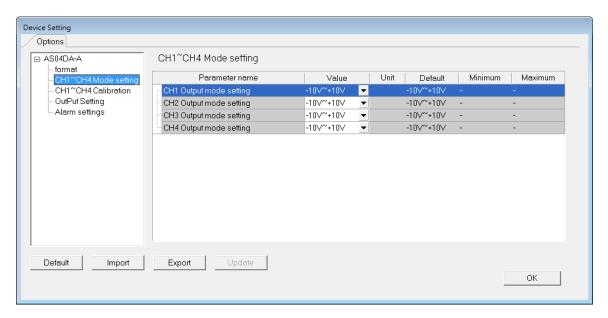


Import

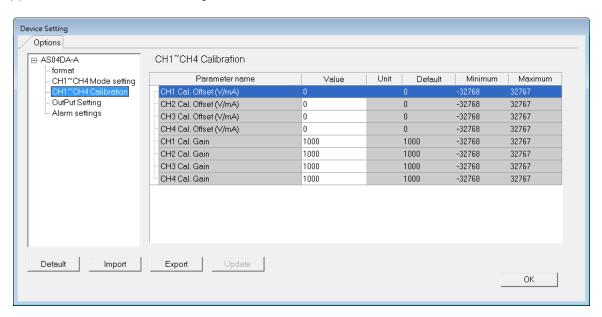
Export ₁

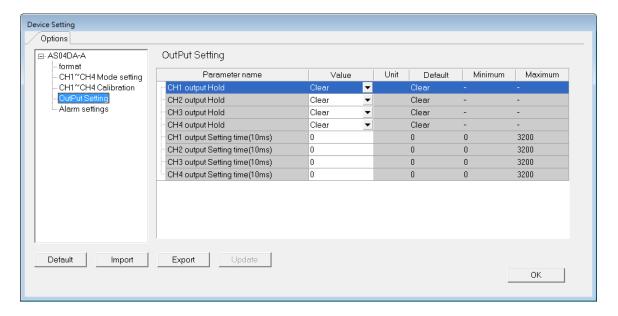


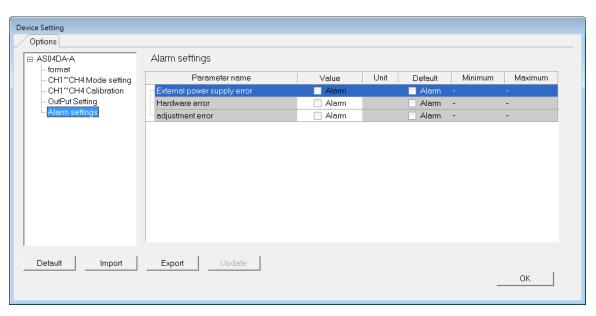
(2) Click **Import** in the Device Settings dialog box and select a CSV file to import save parameters.



3.3.5 Parameters


(1) The output formats of the channels


(2) The CH1-CH4 (channel 1-channel 4) mode settings


(3) The CH1-CH4 calibration settings

(4) The output settings

(5) The alarm settings

3.4 Troubleshooting

3.4.1 Error Codes

Error Code	Description	D → A LED Indicator	ERROR LED Indicator
16#1605	Hardware failure	OFF	ON
16#1607	The external voltage is abnormal.	OFF	ON
16#1608	The factory calibration is abnormal.	OFF	ON
16#1801	The external voltage is abnormal.	OFF	Blinking
16#1802	Hardware failure	OFF	Blinking
16#1804	The factory calibration is abnormal.	OFF	Blinking

3.4.2 Troubleshooting Procedure

Description	Procedure
The external voltage is abnormal.	Ensure the external 24 V power supply to the module is functioning normally.
Hardware failure	Return the module to the factory for repair.
Internal error The factory calibration is abnormal.	Contact the factory.

MEMO

Chapter 4 Analog Input/Output Module AS06XA

Table of Contents

4.1 C	Overview	4-2
4.1.1	Characteristics	4-2
4.2 S	Specifications and Functions	4-3
4.2.1	Specifications	4-3
4.2.2	Profile	4-5
4.2.3	Arrangement of Terminals	4-7
4.2.4	Control Registers	4-7
4.2.5	Functions	4-13
4.2.6	Wiring	4-19
4.2.7	LED Indicators	4-22
4.3 H	HWCONFIG in ISPSoft	4-23
4.3.1	Initial Setting	4-23
4.3.2	Checking the Version of a Module	4-26
4.3.3	Online Mode	4-27
4.3.4	Importing/Exporting a Parameter File	4-28
4.3.5	Parameters	4-29
4.4 T	roubleshooting	4-33
4.4.1	Error Codes	4-33
4.4.2	Troubleshooting Procedure	4-34

4.1 Overview

This chapter describes the specifications for the analog input/output module, its operation, and its programming. On the analog input/output module, four channels receive analog signals (voltage or current), and converts those signals into 16-bit digital signals. In addition, the analog input/output module receives two blocks of 16-bit digital data from a CPU module, and converts the digital data into analog signals (voltage or current). The analog input/output module sends the analog signals by two channels

4.1.1 Characteristics

(1) Use the AS06XA-A analog input/output module, based on its practical application.

CH1-CH4: A channel can receive either voltage or current inputs.

CH5-CH6: A channel can send either voltage or current outputs.

(2) High-speed conversion

The conversion rate is 2 ms per channel.

(3) High accuracy

Conversion accuracy: At ambient temperature of 25° C.

Input: The error range for both voltage and current input is $\pm 0.2\%$.

Output: The error range for both voltage and current output is ±0.02%.

(4) Use the utility software to configure the module.

The HWCONFIG utility software is built into ISPSoft. You can set modes and parameters directly in HWCONFIG without spending time writing programs to set registers to manage functions.

4.2 Specifications and Functions

4.2.1 Specifications

Electrical specifications

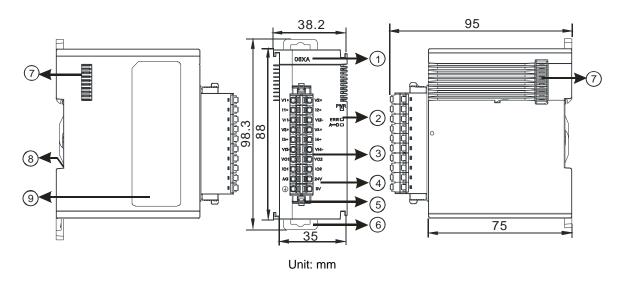
Module Name	AS06XA-A		
Number of Analog	4 inputs		
Inputs/Outputs	2 outputs		
Analog-to-Digital Conversion	Voltage input/Current input/Voltage output/Current output		
Supply Voltage	24 VDC (20.4–28.8 VDC) (-15% to +20%)		
Connector Type	Removable terminal block		
Conversion Time	2ms/channel		
	An analog circuit is isolated from a digital circuit by a digital integrated circuit/ optocoupler, but the analog channels are not isolated from one another. Isolation between a digital circuit and the ground: 500 VDC		
Isolation	Isolation between an analog circuit and the ground: 500 VDC		
	Isolation between an analog circuit and a digital circuit: 500 VDC		
	Isolation between the 24 VDC and the ground: 500 VDC		

• Functional specifications for the analog-to-digital conversion

Analog-to-Digital Conversion	Voltage Input				
Rated Input Range	-10 V to +10 V	0 V–10 V	±5 V	0–5 V	1–5 V
Hardware Input Range	-10.1 V to +10.1 V	-0.1 V to +10.1 V	-5.05 V to +5.05 V	-0.05 V to +5.05 V	0.95– 5.05 V
Error Range (Room Temperature)	±0.2%				
Error Range (Full Temperature Range)	±0.5%				
Linearity error (Room Temperature)	±0.02%				
Linearity error (Full Temperature Range)	±0.06%				
Hardware Resolution	16 bits				
Input Impedance	2 ΜΩ				

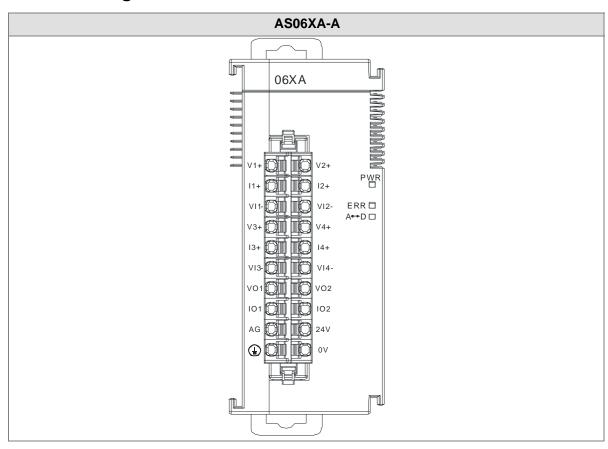
Absolute Input Range	±15 V
Absolute Input Range	±15 V

Analog-to-Digital Conversion	Current Input			
Rated Input Range	±20 mA 0–20 mA 4–20 mA		4–20 mA	
Hardware Input Range	-20.2 mA to +20.2 mA	-0.2 mA to +20.2 mA	3.8–20.2 mA	
Error Range (Room Temperature)		±0.2%		
Error Range (Full Temperature Range)	±0.5%			
Linearity Error (Room temperature)	±0.04%			
Linearity Error (Full Temperature Range)	±0.10%			
Hardware Resolution		16 bits		
Input Impedance	<u>≥</u> 1 MΩ			
Absolute Input Range	±32 mA			


• Functional specifications for the digital-to-analog conversion

Digital-to-Analog Conversion	Voltage Output				
Rated Output Range	±10 V	0–10 V	±5 V	0–5 V	1–5 V
Hardware Output Range	-10.1 V to +10.1 V	-0.1 V to +10.1 V	-5.05 V to +5.05 V	-0.05 V to +5.05 V	0.95– 5.05 V
Error Rate (Room Temperature)	±0.2%				
Error Range (Full temperature range)	±0.5%				
Linearity Error (Room Temperature)			±0.05%		
Linearity Error (Full Temperature Range)	±0.05%				
Hardware Resolution	16 bits				

Permissible load	1 kΩ–2 MΩ: ±10 V and 0–10 V
impedance	≥500 Ω: 1–5 V


Digital-to-Analog Conversion	Current Output		
Rated Output Range	0–20 mA 4–20 mA		
Hardware Output Range	-0.2 mA to 20.2 mA	3.8–20.2 mA	
Error Range (Room Temperature)		±0.2%	
Error Range (Full Temperature Range)	±0.5%		
Linearity Error (Room Temperature)	±0.03%		
Linearity Error (Full Temperature Range)	±0.10%		
Hardware Resolution	12 bits		
Permissible Load Impedance		≦550 Ω	

4.2.2 Profile

Number	Name	Description
1	Model Name	Model name of the module
		Operating status of the module
	RUN LED Indicator	ON: the module is running.
		OFF: the module is not running.
		Error status of the module
2	ERROR LED Indicator	ON: a serious error exists in the module.
	LIXIVOIX ELD IIIdicator	OFF: the module is operating normally.
		Blink: a minor error exists in the module.
	Digital to Analog Conversion Indicator	Digital-to-analog conversion status
		Blinking: conversion is in process.
	Conversion indicator	OFF: conversion has stopped.
3	Removable Terminal Block	Inputs are connected to transducers.
3	Removable Terminal Block	Outputs are connected to loads to be driven.
4	Arrangement of the	Arrangement of the terminals
	Input/Output Terminals	Through the terminal
5	Clip	For removing the terminal block
6	DIN Rail Clip	Secures the module onto the DIN rail
7	Module Connecting Set	Connects the modules
8	Ground Clip	
9	Label	Nameplate

4.2.3 Arrangement of Terminals

4.2.4 Control Registers

CR#	Name	Description	Defaults
0	Format Setup	0: integer format	0
1	Input channel 1 mode setup	1: floating point format 0: closed 1: -10 V to +10 V (default)	
2	Input channel 2 mode setup	2: 0–10 V 3: -5 to +5 V	
3	Input channel 3 mode setup	4: 0–5 V 5: 1–5 V	1
4	Input channel 4 mode setup	6: 0–20 mA 7: 4–20 mA 8: -20 mA to +20 mA	
5	Input channel 1 offset	Range: -32768 to +32767	0

CR#	Name	Description	Defaults
6	Input channel 2 offset		
7	Input channel 3 offset		
8	Input channel 4 offset		
9	Input channel 1 gain		
10	Input channel 2 gain	Panga: 22769 to 122767	1000
11	Input channel 3 gain	Range: -32768 to +32767	
12	Input channel 4 gain		
13	Input channel 1 average times		
14	Input channel 2 average times		
15	Input channel 3 average times	Range: 1–100	10
16	Input channel 4 average times		
17	Input channel 1 filter average percentage		
18	Input channel 2 filter average percentage	Range: 0–3 Unit: ±10%	
19	Input channel 3 filter average percentage	1: ±10% 2: ±20%	1
20	Input channel 4 filter average percentage	3: ±30%	
21	Input channel sampling cycle (sampling/integration time)	0: 2 ms 1: 4 ms 2: 10 ms 3: 15 ms 4: 20 ms 5: 30 ms 6: 40 ms 7: 50 ms 8: 60 ms	0

CR#	Name	Description	Defaults
		9: 70 ms	
		10: 80 ms	
		11: 90 ms	
		12: 100 ms	
		0: open channel alarm	
		1: close channel alarm	
		bit0: channel 1	
		bit1: channel 2	
		bit2: channel 3	
22	Input channel alarm setup	bit3: channel 4	
	input channel alaim setup		
		0: warning	
		1: alarm	
		bit8: error in the power supply	
		bit9: error in the module hardware	
		bit10: error in calibration	
23	Output channel 1 mode	0: closed	
2.5	setup	1: -10 V to +10 V (default)	
	Output channel 2 mode	2: 0–10 V	
	setup	3: -5 V to +5 V	1
24		4: 0–5 V	'
24		5: 1–5 V	
		6: 0–20 mA	
		7: 4–20 mA	
25	Output channel 1 offset	Panga: 22769 to 122767	
26	Output channel 2 offset	Range: -32768 to +32767	0
27	Output channel 1 gain	Range: -32768 to +32767	4000
28	Output channel 2 gain		1000
00	Retain the output sent by	0: When the PLC stops, the value of the analog output is	
29	channel 1	reset to 0.	0
20	Retain the output sent by	1: When the PLC stops, the value of the analog output is	U
30	channel 2	retained.	
31	Refresh the time for	Range: 10-3200 (100 ms-32 s)	0

CR#	Name	Description	Defaults
	output sent by channel 1	Unit: 10 ms	
	Refreshing the time for an	Any value less than 10 is read as 0. Any value larger	
32	output sent by channel 2	than 3200 is read as 3200.	
		Set the value to 0 to disable this function.	
33	The minimum scale range		-10
34	for input channel 1		
35	The minimum scale range		-10
36	for input channel 2		-10
37	The minimum scale range		40
38	for input channel 3		-10
39	The minimum scale range		
40	for input channel 4		-10
41	The minimum scale range	The application of a channel has a corresponding	40
42	for output channel 1	The analog input mode of a channel has a corresponding digital range. For example, if the analog range is -10 V to	
43	The minimum scale range	+10 V and the digital range is -10.0 to +10.0, the analog	10
44	for output channel 2	values -10 V to +10 V correspond to the digital values	-10
45	The maximum scale range	-10.0 to +10.0. If the analog input mode of a channel is	10
46	for input channel 1	4–20 mA, the minimum scale range is 4 mA and the	10
47	The maximum scale range	maximum scale range is 20 mA. When the format is	40
48	for input channel 2	integer, however, the scale range is invalid.	10
49	The maximum scale range		40
50	for input channel 3		10
51	The maximum scale range		10
52	for input channel 4		10
53	The maximum scale range		10
54	for output channel 1		
55	The maximum scale range		10
56	for output channel 2		10

CR#	Name	Description	Defaults
		Instructions for peak values	
		16#0101: record the peak value again for channel 1	
		16#0102: record the peak value again for channel 2	
		16#0104: record the peak value again for channel 3	
		16#0108: record the peak value again for channel 4	
		16#010F: record the peak values again for channels 1–4	
		16#0201: enable recording for channel 1	
		16#0202: enable recording for channel 2	
201	Instruction Set	16#0204: enable recording for channel 3	0
		16#0208: enable recording for channel 4	
		16#020F: enable recording for channels 1–4	
		16#0211: disable recording for channel 1	
		16#0212: disable recording for channel 2	
		16#0214: disable recording for channel 3	
		16#0218: disable recording for channel 4	
		16#021F: disable recording for channels 1–4	
		16#0502: restore default settings	
210	The maximum peak value		
210	for channel 1		-
211	The maximum peak value		_
211	for channel 2	Integer format; the maximum peak value for analog	
212	The maximum peak value	inputs	-
	for channel 3		
213	The maximum peak value		-
	for channel 4		
214	The minimum peak value		-
	for channel 1		
215	The minimum peak value	Integer format; the minimum peak value for analog inputs	-
	for channel 2		
216	The minimum peak value		-
	for channel 3		
217	The minimum peak value		-
	for channel 4		

CR#	Name	Description	Defaults
222	The time to record for channel 1		1
223	The time to record for channel 2	Unit: 10 ms	1
224	The time to record for channel 3	Range: 1–100 Time to record the digital value for the channels	1
225	The time to record for channel 4		1
240	The number of records for channel 1	Range: 0–500, display the current records	0
241	The number of records for channel 2		0
242	The number of records for channel 3		0
243	The number of records for channel 4		0
4000- 4499	Records for channel 1	500 records for channel 1	
4500- 4999	Records for channel 2	500 records for channel 2	
5000- 5499	Records for channel 3	500 records for channel 3	
5500- 5999	Records for channel 4	500 records for channel 4	

4.2.5 Functions

Set modes of operation and parameters with HWCONFIG utility software built into ISPSoft.

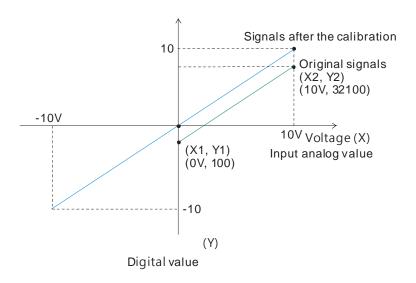
Analog input

Item	Function	Description
1	Enable/Disable a	Enable or disable a channel.
'	Channel	2. If a channel is disabled, the total conversion time decreases.
2	Calibration	Calibrate a linear curve.
3	Average	Conversion values are averaged and filtered.
4	Disconnection	Disconnection detection only operates when the analog range is 4–20
4	Detection	mA or 1–5 V.
	Channel Detect and Alarm	If an input signal exceeds the range of inputs that the hardware can
5		receive, the module produces an alarm or a warning. You can disable
		this function.
6	Limit Detections for	Save the maximum/minimum values for channels
	Channels	Caro the maximum, minimum rades for sharmon
7	Records for	Save the analog curves for channels.
	Channels	
8	Scale Range	When the format is floating-point, you can set the scale range.

1. Enable/Disable a Channel

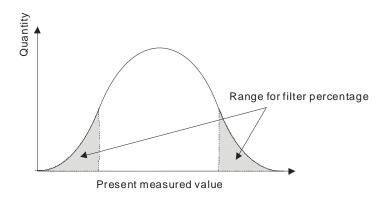
An analog signal is converted into a digital signal at a rate of 2 ms per channel. The total conversion time is 2 ms X (the number of channels). If a channel is not used, you can disable it to decrease the total conversion time.

2. Calibration


To make a curve meet specific needs, calibrate the curve by changing the offset and the gain. The calibration range depends on the range of inputs which can be received by the hardware. The formula is:

$$Output = \frac{(Input \times Gain)}{1000} + Offset$$

Example:

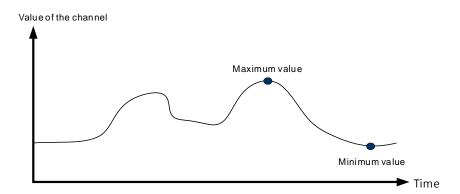

A channel receives voltage inputs between -10.0 V to +10.0 V. The gain is 1000, and the offset is 0. The corresponding value for the original signal -10.0 V to +10.0 V is -32000 to +32000. If you change the offset to -100, the calibrated value for the original signal -10.0 V to +10.0 V becomes -31900 to +32100. When the input voltage is 0 V, the digital value becomes -100. When the input voltage is 10.0 V, the digital value becomes 32100.

Gain = 1000, Offset = -100

3. Average

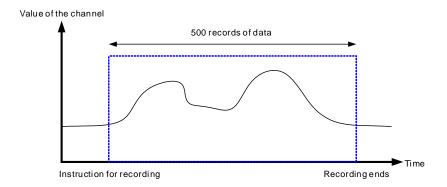
You can set the average value between 1–100. It is a steady value obtained from the sum of the recorded values. If the recorded values include an acute pulse due to unavoidable external factors, however, you may observe violent changes in the average value. Use the filtering function to exclude acute pulses from the sum-up and equalization, so the computed average value is not affected by the acute recorded values. Set the filter percentage to the range 0–3, where the unit is 10%. If you set the filter range to 0, the system sums up all the recorded values and divides them to obtain the average value, but if you set the filter range to 1, for example, the system excludes the bottom 10% and the top 10% of the values and averages only the remaining values to get the average value. For instantance, set the average value to 100 and set the filter percentage to 3. When there are 100 pieces of data collected, the system arranges the collected data according to their values from large to small and then excludes the bottom 30% and top 30% of the values (60 pieces of data) and averages only the remaining values (40 pieces of data) to obtain the average value.

4. Disconnection detection

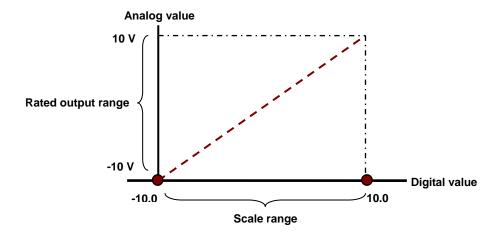

Disconnection detection only operates when the analog range is 4–20 mA or 1–5 V. If a module which can receive inputs between 4–20 mA or between 1–5 V is disconnected, the input signal exceeds the range of allowable inputs, so the module produces an alarm or a warning.

5. Channel Detection

If an input signal exceeds the allowable range of inputs, an error message appears. You can disable this function so that the module does not produce an alarm or a warning when the input signal exceeds the input range.


6. Limit detections for channels

This function saves the maximum and minimum values for channels so that you can determine the peak to peak values.


7. Records for Channels

Record the input values of the cyclic sampling for each channel. The system saves up to 500 data points and the recording time is 10 ms.

8. Scale range

When the format is floating-point, you can set the scale range. The analog output mode of a channel has a corresponding digital range. Digital values correspond to analog outputs sent by the module. For example, if the analog range is -10 V to +10 V, the digital range is -10.0 to +10.0, the HSP scale is 10.0, and the LSP scale is -10.0. The digital values -10.0 to +10.0 correspond to the analog values -10 V to +10 V, as the example below shows.

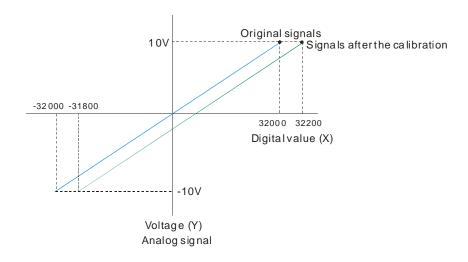
Analog Output

Item	Function	Description
4	Enable/Disable a	1. Enable or disable a channel.
1	Channel	2. If a channel is disabled, the total conversion time decreases.
2	Calibration	Calibrate a linear curve.
3	Retain an Output	When a module stops running, the system retains the signal sent by the
		module.
4	Refresh Time for an	Refresh the analog output value according to the value of the fixed
	Output	slope.

Item	Function	Description
5	Scale Range	You can set the scale range when the format is floating-point.

1. Enable/Disable a Channel

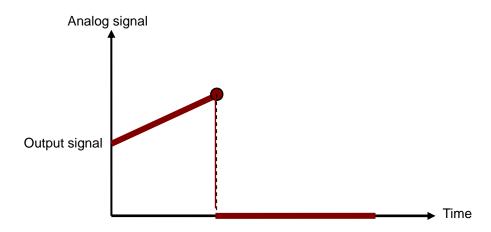
An analog signal is converted into a digital signal at a rate of 2 ms per channel. The total conversion time is 2 ms X (the number of channels). If a channel is not used, you can disable it to decrease the total conversion time.


2. Calibration

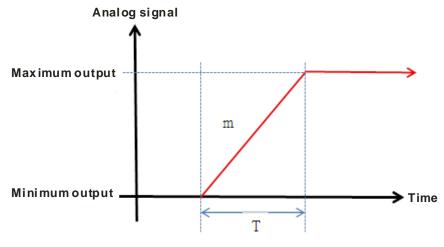
To make a curve meet specific needs, calibrate the curve by changing the offset and the gain. The calibration range depends on the range of inputs which can be received by the hardware. The formula is:

$$Output = \frac{(Input \times Gain)}{1000} + Offset$$

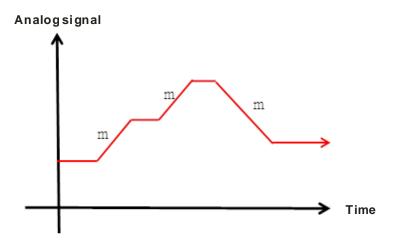
Example:


A channel receives voltage inputs between -10.0 V to +10.0 V. The gain is 1000, and the offset is 0. The corresponding value for the original signal -10.0 V to +10.0 V is -32000 to +32000. If you change the offset to 200 and the gain to 1000, the calibrated value for the original signal -10.0 V to +10.0 V is -31800 to +32200.

3. Retain an Output

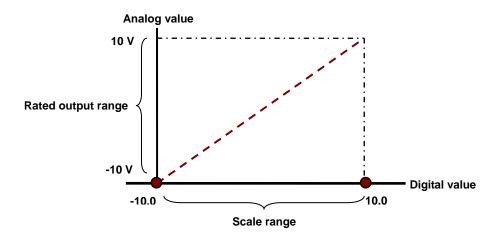

When a module stops running, the system retains the signal sent by the module.

The output is not retained:



3. Refresh Time for an Output

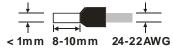
Set the refresh time for an output and the system updates the value of the slope (m) accordingly.


When the analog output signal changes, the system updates the value of the analog output according to the value set in the slope, as shown in the image below.

*The output conversion time and the input channel sampling cycle are the same.

4. Scale Range

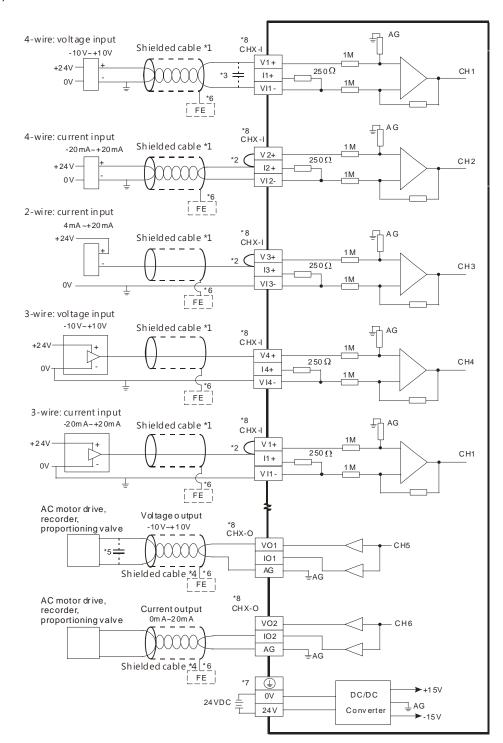
You can set the scale range when the format is floating-point. The analog output mode of a channel has a corresponding digital range. Digital values correspond to analog outputs sent by the module. For example, if the analog range is -10 V to +10 V, the digital range is -10.0 to +10.0, the HSP scale is 10.0, and the LSP scale is -10.0. The digital values -10.0 to +10.0 correspond to the analog values -10 V to +10 V, as the example below shows.


4.2.6 Wiring

Precautions

To ensure the analog-to-digital module functions well and reliably, the external wiring must prevent noise. Before you install the cables, follow the precautions below.

(1) To prevent a surge and induction, the AC cable and the input signal cables that are connected to the AS06XA-A must be separate cables.


- (2) Do not install the cable near a main circuit, a high-voltage cable, or a cable connected to a load that is not a PLC. In addition, the cable must not be bound to a main circuit, a high-voltage cable, or a cable connected to a load which is not a PLC.
- (3) Ground shielded cables and hermetically sealed cables separately.
- (4) Terminals with insulation sleeves cannot be arranged as a terminal block, so you should cover the terminals with insulation tubes.
- (5) Use single-core cables or twin-core cables with a diameter of 24–22 AWG and with pin-type connectors smaller than 1 mm. Only use copper conducting wires which can withstand temperatures of 60° C /75° C or higher.

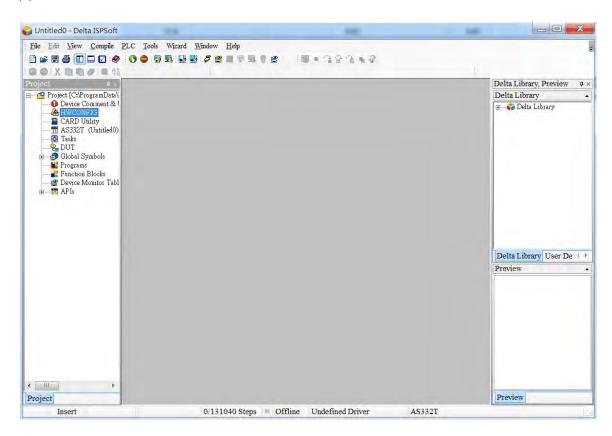
- (6) Note: use cables with the same length (less than 200 m) and use wire resistance of less than 100 ohm.
- (7) Notes on two-wire, three-wire, and four-wire connections:
 - Two-wire connection/three-wire connection (passive transducer): connect the transducer and the analog input module to the same power circuit.
 - Four-wire connection (active transducer): the transducer uses an independent power supply, so
 do not connect it to the same power circuit as the analog input module.

External wiring

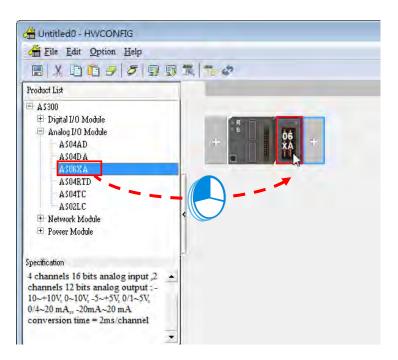
(1) AS06XA-A

- *1. Use shielded cables to isolate the analog input signal cable from other power cables.
- *2. If the module is connected to a current signal, the terminals Vn and In+ (n=1-4) must be short-circuited.
- *3. If variability in the input voltage results in interference within the wiring, connect the module to a capacitor having a capacitance between 0.1–0.47 μF and a working voltage of 25 V.

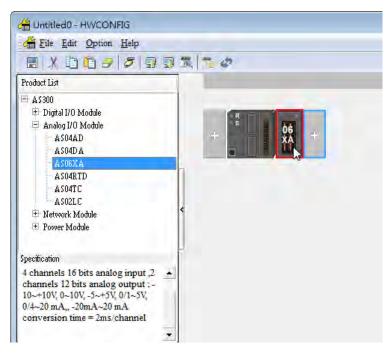
- *4. Connect the shielded cable to the terminal FE and to the ground terminal.
- *5. Connect the terminal $\begin{tabular}{l} & & \\ &$
- *6. The wording "CHX-I" indicates that you can use those five wiring methods for every input channel. The wording "CHX-O" indicates that you can use those two wiring methods for every output channel.

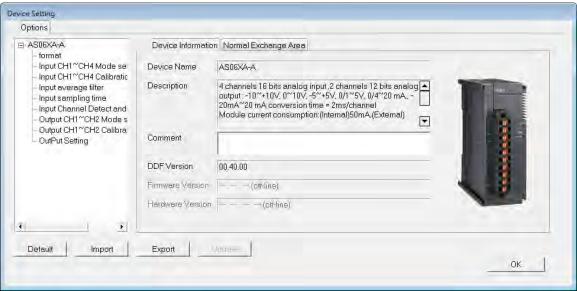

4.2.7 LED Indicators

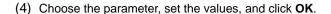
Number	Name	Description
		Operating status of the module
1	RUN LED Indicator	ON: the module is running.
		OFF: the module is not running.
		Error status of the module
2	ERROR LED	ON: a serious error exists in the module.
2	Indicator	OFF: the module is operating normally.
		Blink: a minor error exists in the module.
	Digital to Analog	Digital-to-analog conversion status
3	Conversion	Blinking: conversion is in process.
	Indicator	OFF: conversion has stopped.

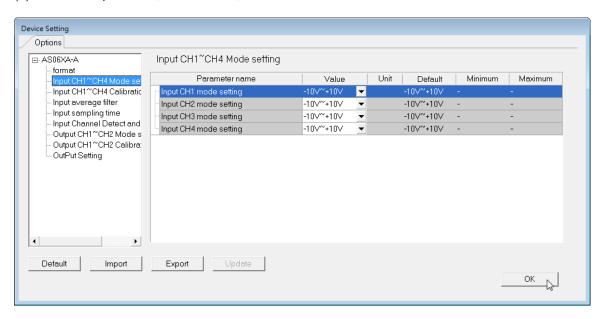

4.3 HWCONFIG in ISPSoft

4.3.1 Initial Setting

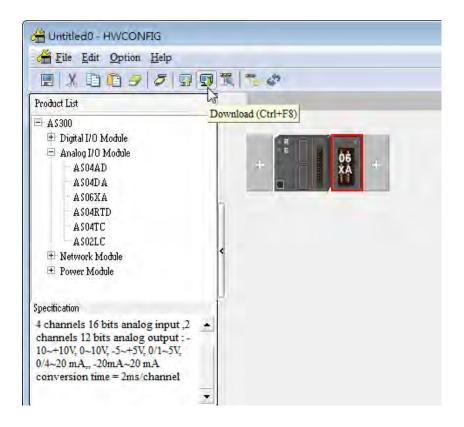

(1) Start ISPSoft and double-click HWCONFIG.

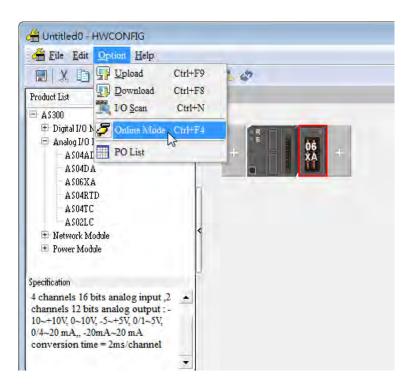



(2) Select a module and drag it to the working area.

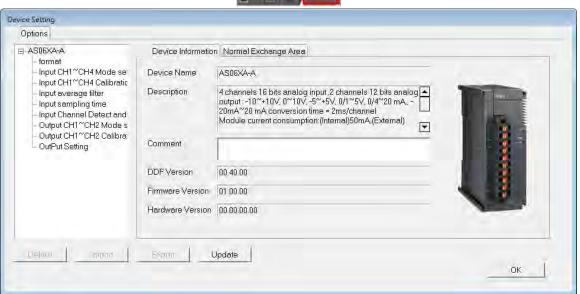


(3) Double-click the module in the working area to open the Device Setting page.

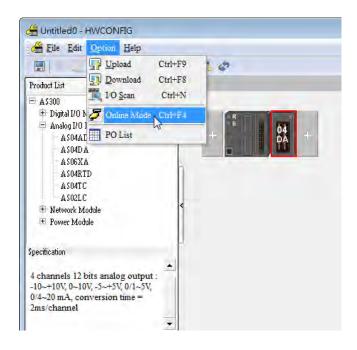




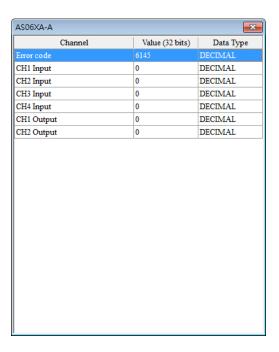
(5) Click **Download** on the toolbar to download the parameters. Note that you cannot download the parameters while the CPU module is running.


4.3.2 Checking the Version of a Module

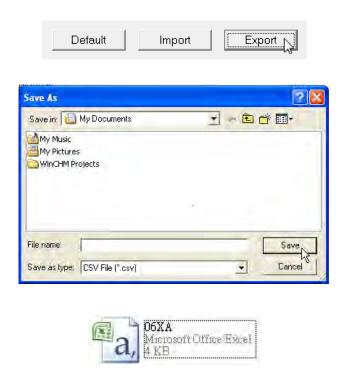
(1) On the Option menu, click Online Mode.


(2) Double-click the module to open the Device Setting page. The versions of both the firmware and the hardware are displayed.

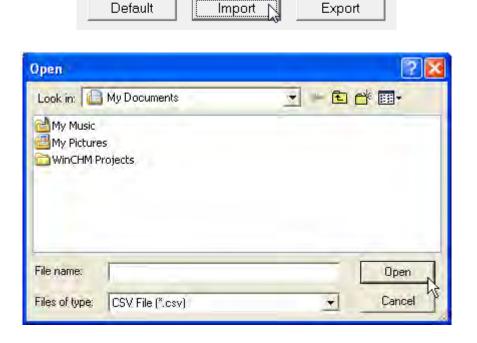
4.3.3 Online Mode


(1) On the Option menu, click Online Mode.

(2) Right-click the module and click **Module Status**.

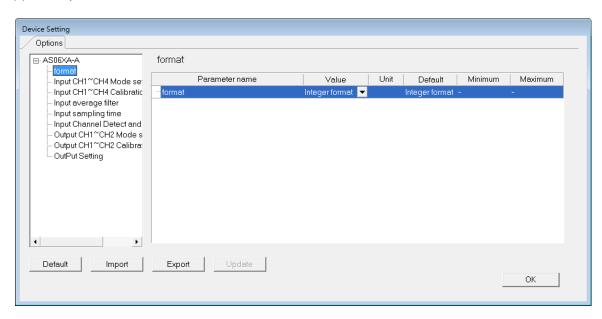


(3) View the module status.

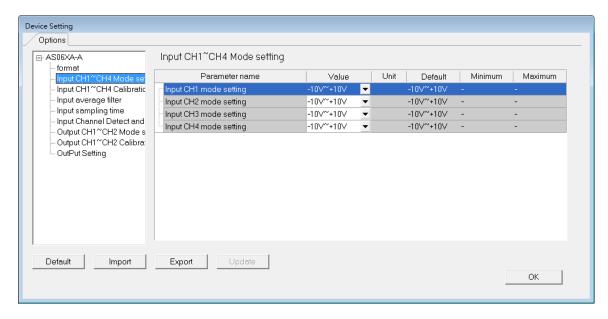


4.3.4 Importing/Exporting a Parameter File

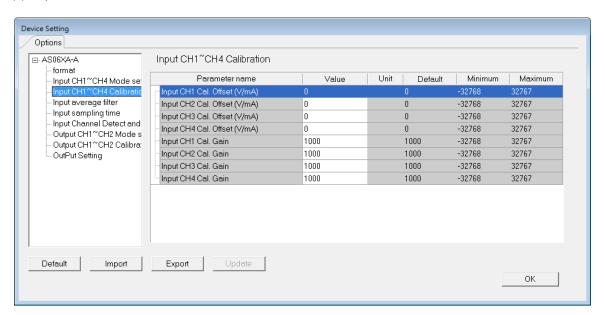
(1) Click **Export** in the Device Settings dialog box to save the current parameters as a CSV file (.csv).

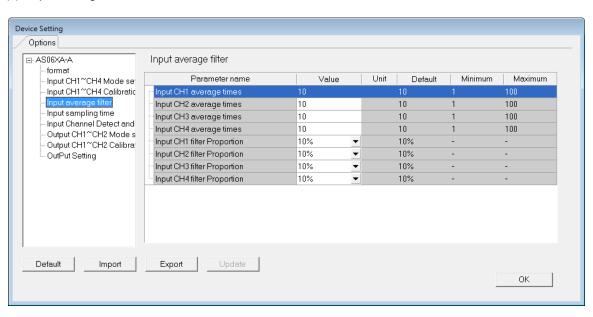


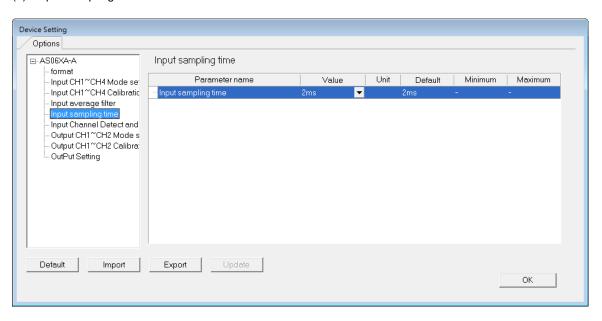
(2) Click Import in the Device Settings dialog box and select a CSV file to import saved parameters.

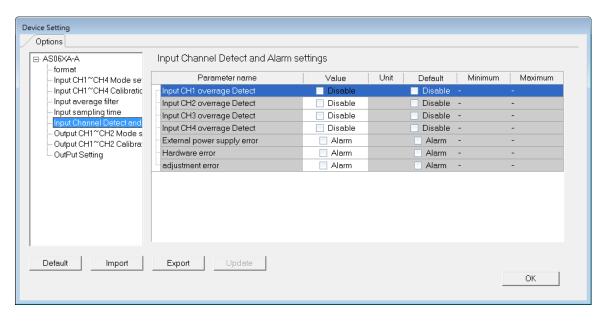


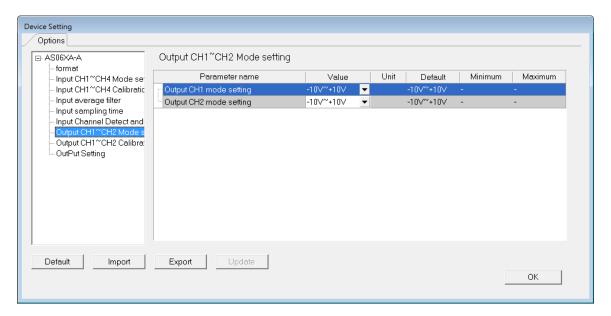
4.3.5 Parameters

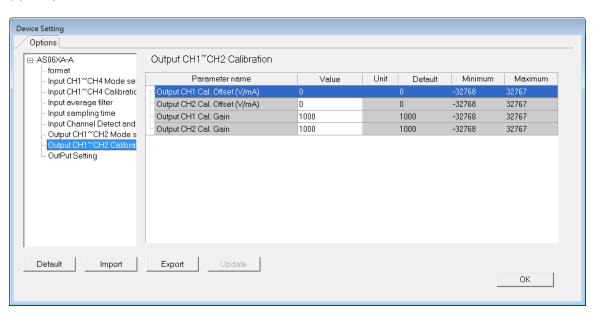

(1) The input modes of the channels

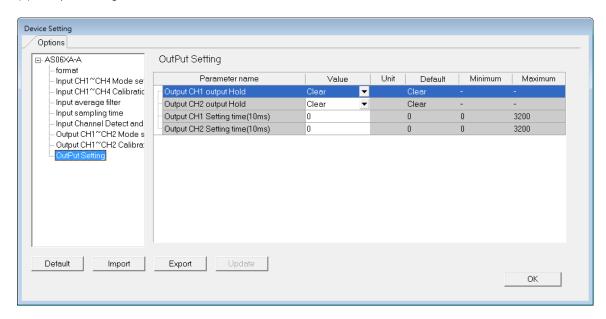

(2) Input CH1-CH4 (channel 1-channel 4) mode settings


(3) Input CH1-CH4 calibration


(4) Input average filter


(5) Input sampling time


(6) Input channel detection and alarm settings


(7) Output CH1-CH2 mode settings

(8) Output CH1-2 calibration

(9) Output Settings

4.4 Troubleshooting

4.4.1 Error Codes

Error Code	Description	A↔ D LED indicator	ERROR LED indicator
16#1605	Hardware failure	OFF	ON
16#1607	The external voltage is abnormal.	OFF	ON
16#1608	The factory calibration is abnormal.	OFF	ON
16#1801	The external voltage is abnormal.	OFF	Blinking
16#1802	Hardware failure	OFF	Blinking
16#1804	The factory calibration is abnormal.	OFF	Blinking
16#1808	The signal received by channel 1 exceeds the range of inputs that the hardware can receive.		
16#1809	The signal received by channel 2 exceeds the range of inputs that the hardware can receive.	Run: blinking	Di. Li
16#180A	The signal received by channel 3 exceeds the range of inputs that the hardware can receive.	Stop: OFF	Blinking
16#180B	The signal received by channel 4 exceeds the range of inputs that the hardware can receive.		

4.4.2 Troubleshooting Procedure

Description	Procedure
The external voltage is abnormal.	Ensure the external 24 V power supply to the module is functioning normally.
Hardware failure	Return the module to the factory for repair.
Internal error The factory calibration is abnormal.	Contact the factory.
The signal received by channel 1 exceeds the range of inputs that the hardware can receive.	Check the signal received by channel 1
The signal received by channel 2 exceeds the range of inputs that the hardware can receive.	Check the signal received by channel 2.
The signal received by channel 3 exceeds the range of inputs that the hardware can receive.	Check the signal received by channel 3.
The signal received by channel 4 exceeds the range of inputs that the hardware can receive.	Check the signal received by channel 4.

Chapter 5 Temperature Measurement Module AS04/06RTD

Table of Contents

5.1 Ove	erview	5-2
5.1.1	Characteristics	5-2
5.1.2		
5.2 Sp e	ecifications and Functions	5-3
5.2.1	Specifications	5-3
5.2.2	Profile	5-4
5.2.3	Arrangement of Terminals	5-6
5.2.4	Control Registers	
5.2.5	Functions	5-1C
5.2.6	Control Mode	5-20
5.2.7	Wiring	5-21
5.2.8	LED Indicators	5-27
5.3 HW	/CONFIG in ISPSoft	5-27
	nitial Setting	
	Checking the Version of a Module	
	Online Mode	
5.3.4 li	mporting/Exporting a Parameter File	5-32
	Parameters	
5.4 Tro	ubleshooting	5-36
	Error Codes	
	Froubleshooting Procedure	
	State of the Connection	

5.1 Overview

5.1.1 Characteristics

This section describes the specifications for temperature measurement modules, their operation, and their programming. The AS04/06RTD is a temperature measurement module that converts the temperatures received from four/six thermocouples into digital signals. You can select either Celsius or Fahrenheit as the unit of measurement.

5.1.2 Characteristics

(1) Select a sensor based on its practical application.

Pt100/Ni100/Pt1000/Ni1000/JPt100/LG-Ni1000/Cu50/Cu100/0–300 Ω /0–3000 Ω sensor

(2) High-speed conversion

Two-wire/Three-wire configuration: 200 ms/channel

(3) High accuracy

Conversion accuracy: The error range of the input is ±0.1% at ambient temperature of 25° ±5° C.)

(4) Disconnection detection

When a sensor is disconnected, the AS04RTD produces an alarm or a warning.

(5) PID control

An object's temperature can be maintained through PID control actions.

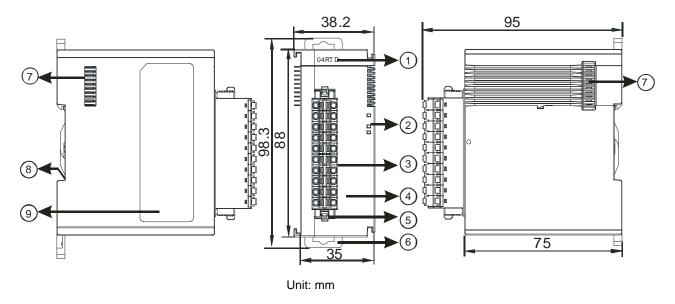
(6) Use the utility software to configure the module.

The HWCONFIG utility software is built into ISPSoft. You can set modes and parameters directly in HWCONFIG without spending time writing programs to set registers to manage functions.

5.2 Specifications and Functions

5.2.1 Specifications

Electrical specifications

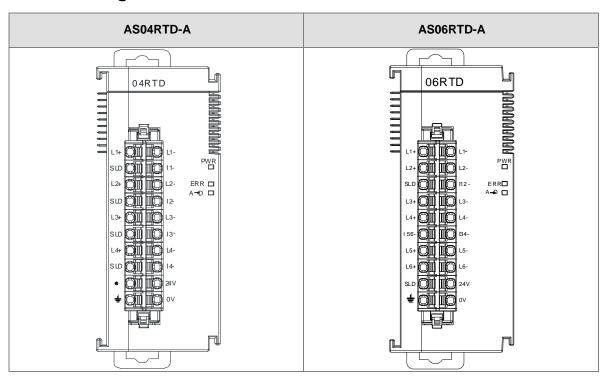

Module	AS04RTD-A	AS06RTD-A	
Number of Analog Inputs	4	6	
	2-Wire & 3-Wire Pt100/Ni100/Pt1000/Ni1000/JPt100/LG-Ni1000/Cu50/Cu100/0–300 Ω/0–3000 Ω		
	Pt100: DIN 43760-1980 JIS C1604-1989; 100 Ω 3850 PPM/°C		
Applicable Sensor	Pt1000: DIN EN60751; 1 kΩ 3850 PPM/°C		
Applicable Cellson	Ni100/Ni1000: DIN 43760		
	JPt100: JIS C1604-1989		
	LG-Ni1000		
	Cu50/Cu100		
Supply Voltage	24 VDC (20.4–28.8 VDC) (-15% to +20%	5)	
Connector Type	Removable terminal block		
	Pt100/Ni100/Pt1000/Ni1000/JPt100		
	25° C/77° F: The allowed error range is ±0.1% of full scale.		
	-20° C to 60° C/-4° F to 140° F: The allowed error range is ±0.5% of full scale.		
	LG-Ni1000		
Overall Accuracy	25° C/77° F: The allowed error range is ±0.1% of full scale.		
	Cu50		
	25° C/77° F: The allowed error range is ±4% of full scale.		
	Cu100		
	25° C/77° F: The allowed error range is ±	£2% of full scale.	
Conversion Time	Two-wire/Three-wire configuration: 200 n	ns/channel	
	An analog circuit is isolated from a digital circuit by a digital integrated circuit/		
	optocoupler, and the analog channels are isolated from one another by		
	optocouplers.		
Isolation	Isolation between a digital circuit and the ground: 500 VDC		
	Isolation between an analog circuit and the ground: 500 VDC		
	Isolation between an analog circuit and the digital circuit: 500 VDC		
	Isolation between the 24 VDC and the ground: 500 VDC		

Weight

Functional specifications

Analog-to-Digital Conversion	Centigrade (°C)	Fahrenheit (°F)	Input Impedance
Rated Input Range	Pt100: -180° C to +800° C Ni100: -80° C to +170° C Pt1000: -180° C to +800° C Ni1000: -80° C to +170° C JPt100: -180° C to +500° C LG-Ni1000: -50° C to +180° C Cu50: -50° C to +150° C Cu100: -50° C to +150° C	Pt100: -292° F to +1,472° F Ni100: -112° F to +338° F Pt1000: -292° F to +1,472° F Ni1000: -112° F to +338° F JPt100: -112° F to +338° F LG-Ni1000: -58° F to +356° F Cu50: -58° F to +302° F Cu100: -58° F to +302° F	0–300 Ω 0–3000 Ω
Average function	Range: 1-100		
Self-diagnosis	Disconnection detection		

5.2.2 Profile



Number	Name	Description
1	Model Name	Model name of the module
		Operating status of the module
2	RUN LED Indicator	ON: the module is running.
		OFF: the module is not running.

5

Number	Name	Description
		Error status of the module
	ERROR LED	ON: a serious error exists in the module.
	Indicator	OFF: the module is operating normally.
		Blink: a minor error exists in the module.
	Digital-to-Analog	Digital-to-analog conversion status
	Conversion	Blinking: conversion is in process.
	Indicator	OFF: conversion has stopped.
3	Removable	The inputs are connected to transducers.
3	Terminal Block	The outputs are connected to loads to be driven.
	Arrangement of the	
4	Input/Output	Arrangement of the terminals
	Yerminals	
5	Clip	For removing the terminal block
6	DIN Rail Clip	Secures the module onto the DIN rail
7	Module Connecting	Connects the modules
	Set	
8	Ground Clip	

5.2.3 Arrangement of Terminals

5.2.4 ASO4RTD Control Registers

CR#	Name	Description	Defaults
0	Format Setup	0: integer format	0
0	Format Setup	1: floating point format	0
		0: closed	
1	Channel 1 mode setup	1 : 0–300 Ω (default)	
		2 : 0–3000 Ω	
2	Channel 2 made catur	3 : Pt100	
۷	Channel 2 mode setup	4 : JPt100	
		5 : Pt1000	1
3	Channel 3 mode setup	6 : Ni100	
	·	7 : Ni1000	
		8 : LG-Ni1000	
4	Channel 4 mode setup	9 : Cu50	
		10 : Cu100	
5	Channel 1 offset		
6	Channel 2 offset	Range: -32768 to +32767	0
7	Channel 3 offset		0
8	Channel 4 offset		
9	Channel 1 gain		
10	Channel 2 gain	Range: -32768 to +32767	1000
11	Channel 3 gain	Name: -32700 to +32707	1000
12	Channel 4 gain		
13	Channel 1 average times		
14	Channel 2 average times	B 4 400	4.0
15	Channel 3 average times	Range: 1–100	10
16	Channel 4 average times	_	
17	Channel 1 filter average percentage		
18	Channel 2 filter average percentage	Range: 0–3	4
19	Channel 3 filter average percentage	Unit: ±10%	1
20	Channel 4 filter average percentage		
21	Units of temperature	0: Fahrenheit	0

CR#	Name	Description	Defaults
		1: Celsius	
		0: open channel alarm	
		1: close channel alarm	
		bit0: channel 1	
		bit1: channel 2	
		bit2: channel 3	
22	Channel alarm actus	bit3: channel 4	0
22	Channel alarm setup		0
		0: warning	
		1: alarm	
		bit8: error in the power supply	
		bit9: error in the module hardware	
		bit10: error in calibration	
		16#0101: record the peak value again for	
		channel 1	
		16#0102: record the peak value again for	
		channel 2	
		16#0104: record the peak value again for	
		channel 3	
		16#0108: record the peak value again for	
		channel 4	
		16#010F: record the peak values again for	
201	Instruction set	channels 1–4	0
201	mondon oot	16#0201: enable recording for channel 1	
		16#0202: enable recording for channel 2	
		16#0204: enable recording for channel 3	
		16#0208: enable recording for channel 4	
		16#020F: enable recording for channels	
		1–4	
		16#0211: disable recording for channel 1	
		16#0212: disable recording for channel 2	
		16#0214: disable recording for channel 3	
		16#0218: disable recording for channel 4	

CR#	Name	Description	Defaults
		16#021F: disable recording for channels	
		1–4	
		16#0502: restore default settings	
210	The maximum peak value for channel 1		-
211	The maximum peak value for channel 2	Integer format; the maximum peak value for	-
212	The maximum peak value for channel 3	analog inputs	-
213	The maximum peak value for channel 4		-
214	The minimum peak value for channel 1		-
215	The minimum peak value for channel 2	Integer format; the minimum peak value for	-
216	The minimum peak value for channel 3	analog inputs	-
217	The minimum peak value for channel 4		-
222	The time to record for channel 1	Unit: 10 ms	1
223	The time to record for channel 2	Range: 1–100	1
224	The time to record for channel 3	The time to record the digital value for the	1
225	The time to record for channel 4	channels	1
240	The number of records for channel 1		0
241	The number of records for channel 2		0
242	The number of records for channel 3	Range: 0–500, display the current records	0
243	The number of records for channel 4		0
4000-			
4499	Records for channel 1	500 records for channel 1	
4500-			
4999	Records for channel 2	500 records for channel 2	
5000-			
5499	Records for channel 3	500 records for channel 3	
5500-			
5999	Records for channel 4	500 records for channel 4	

5.2.5 AS06RTD Control Registers

CR#	Name	Description	Defaults
0	Format Catus	0: integer format	0
0	Format Setup	1: floating point format	U
1	Channel 1 mode setup	0: closed	
		1 : 0–300 Ω (default)	
2	Channel 2 mode setup	2 : 0–3000 Ω	
		3: Pt100	1
3	Channel 3 mode setup	4 : JPt100	
		5 : Pt1000	
4	Channel 4 mode setup	6 : Ni100	
5	Channel E made action	7 : Ni1000	
	Channel 5 mode setup	8 : LG-Ni1000	
6	Channel 6 mode setup	9 : Cu50	
		10 : Cu100	
7	Channel 1 offset		
8	Channel 2 offset		
9	Channel 3 offset	Range: -32768 to +32767	0
10	Channel 4 offset		
11	Channel 5 offset		
12	Channel 6 offset		
13	Channel 1 gain		
14	Channel 2 gain		
15	Channel 3 gain	Panga: 22769 to 122767	1000
16	Channel 4 gain	Range: -32768 to +32767	1000
17	Channel 5gain		
18	Channel 6 gain		
19	Channel 1 average times		
20	Channel 2 average times		
21	Channel 3 average times	Range: 1–100	10
22	Channel 4 average times		
23	Channel 5 average times		

CR#	Name	Description	Defaults
24	Channel 6 average times		
25	Channel 1 filter average percentage		
26	Channel 2 filter average percentage		
27	Channel 3 filter average percentage	Range: 0–3	_
28	Channel 4 filter average percentage	Unit: ±10%	1
29	Channel 5 filter average percentage		
30	Channel 6 filter average percentage		
31	Units of temperature	0: Fahrenheit 1: Celsius	0
32	Channel alarm setup	0: open channel alarm 1: close channel alarm bit0: channel 1 bit1: channel 2 bit2: channel 3 bit3: channel 4 bit4: channel 5 bit5: channel 6 0: warning 1: alarm bit8: error in the power supply bit9: error in calibration	0
201	Instruction set	16#0101: record the peak value again for channel 1 16#0102: record the peak value again for channel 2 16#0104: record the peak value again for channel 3 16#0108: record the peak value again for channel 4 16#110: record the peak values again for	0

		channels 5	
		16#120: record the peak values again for	
		channels 6	
		16#013: record the peak values again for	
		channels 1-6	
		16#0201: enable recording for channel 1	
		16#0202: enable recording for channel 2	
		16#0204: enable recording for channel 3	
		16#0208: enable recording for channel 4	
		16#0210: enable recording for channels 5	
		16#0220: enable recording for channels 6	
		16#023F: enable recording for channels 1-6	
		16#0301: disable recording for channel 1	
		16#0302: disable recording for channel 2	
		16#0304: disable recording for channel 3	
		16#0308: disable recording for channel 4	
		16#0310: disable recording for channel 5	
		16#0320: disable recording for channel 6	
		16#033F: disable recording for channel1-6	
		16#0501: restore default settings, clear	
		setting values in the Flash	
		16#0502: restore default settings, do not	
		clear setting values in the Flash	
210 Th	he maximum peak value for channel 1		-
211 Tr	he maximum peak value for channel 2		-
212 Tr	The maximum peak value for channel 3	Integer format; the maximum peak value for	-
213 Tr	he maximum peak value for channel 4	analog inputs	-
214 Th	he maximum peak value for channel 5		-
215 Tr	he maximum peak value for channel 6		-
216 Th	he minimum peak value for channel 1	Integer format; the minimum peak value for	-

CR#	Name	Description	Defaults
217	The minimum peak value for channel 2	analog inputs	-
218	The minimum peak value for channel 3		-
219	The minimum peak value for channel 4		-
220	The minimum peak value for channel 5		-
221	The minimum peak value for channel 6		-
222	The time to record for channel 1		1
223	The time to record for channel 2	Unit: 100 ms	1
224	The time to record for channel 3	Range: 1–100	1
225	The time to record for channel 4	The time to record the digital value for the	1
226	The time to record for channel 5	channels	1
227	The time to record for channel 6		1
240	The number of records for channel 1	Range: 0–200, display the current records	0
241	The number of records for channel 2		0
242	The number of records for channel 3		0
243	The number of records for channel 4		0
244	The number of records for channel 5		0
245	The number of records for channel 6		0
4000	Records for channel 1	200 records for channel 1	
-4199	Recolds for charmer 1	200 records for charmer 1	_
4500 -4699	Records for channel 2	200 records for channel 2	-
5000			
-5199	Records for channel 3	200 records for channel 3	-
5500			
-5699	Records for channel 4	200 records for channel 4	-
6000			
-6199	Records for channel 4	200 records for channel 5	-
6500 -6699	Records for channel 4	200 records for channel 6	-

5.2.6 Functions

Use the HWCONFIG utility software built into ISPSoft to set modes of operation and parameters.

Analog input

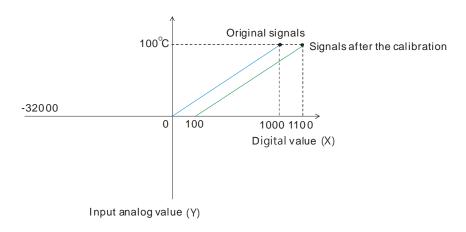
Item	Function	Description
1	Enable/Disable a	Enable or disable a channel.
<u>'</u>	Channel	2. If a channel is disabled, the total conversion time decreases.
2	Unit of Measurement	Select the unit of measurement: Fahrenheit or Celsius.
3	Calibration	Calibrate a linear curve.
4	Average	Conversion values are averaged and filtered.
5	Disconnection Detection	If the channel is open, the module can detect when it is disconnected. If the input is open-circuited, the module produces an alarm or a warning.
6	Channel Detection and Alarm	If an input signal exceeds the range of inputs that the hardware can receive, the module produces an alarm or a warning. You can disable this function.
7	Limit Detections for Channels	Save the maximum/minimum values for channels.
8	Records for	Save the analog curves for channels.
	Channels	
9	PID Algorithm	PID control modes

1. Enable/Disable a Channel

An analog signal is converted into a digital signal at a rate of 200 ms per channel. If a channel is not used, you can disable it to decrease the total conversion time.

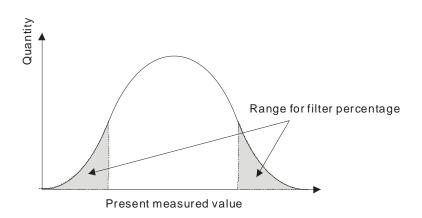
2. Unit of Measurement

Select the unit of measurement, Fahrenheit or Celsius, according to your needs.


3. Calibration

• To make a curve meet specific needs, calibrate the curve by changing the offset and the gain. The calibration range depends on the range of inputs that the hardware can receive. The formula is:

$$Output = \frac{(Input \times Gain)}{1000} + Offset$$

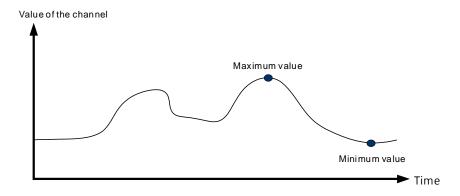

Example:

If the gain is 1000 and the offset is 0, the corresponding value for the original signal 0° C to 100° C is 0–1000. If you change the offset to 100, the calibrated value for the original signal 0° C to 100° C becomes 100–1100.

4. Average

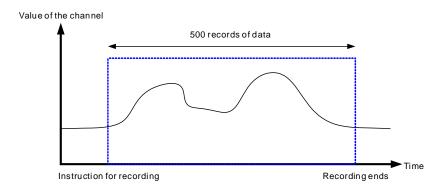
You can set the average value between 1–100. It is a steady value obtained from the sum of the recorded values. If the recorded values include an acute pulse due to unavoidable external factors, however, you may observe violent changes in the average value. Use the filtering function to exclude the acute pulses from the sum-up and equalization, so the computed average value is not affected by the acute recorded values. Set the filter percentage to the range 0–3, where the unit is 10%. If you set the filter range to 0, the system sums up all the recorded values and divides them to obtain the average value, but if you set the filter range to 1, for example, the system excludes the bottom 10% and the top 10% of the values and averages only the remaining values to obtain the average value.

5. Disconnection Detection

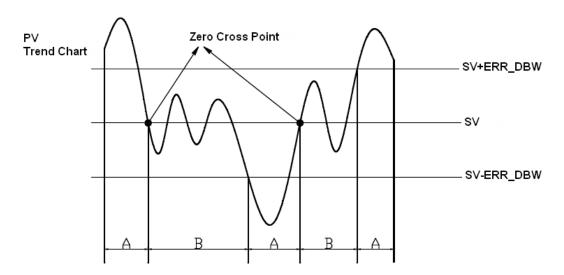

If the channel is open, the module can detect when it is disconnected. If the input is open-circuited, the module produces an alarm or a warning.

6. Channel Detection

If an input signal exceeds the allowable range of inputs, an error message appears. You can disable this function so that the module does not produce an alarm or a warning when the input signal exceeds the input range.


7. Limit Detections for Channels

This function saves the maximum and minimum values for channels so that you can determine the peak to peak values.


8. Records for Channels

Record the input values of the cyclic sampling for each channel. The system saves up to 500 data points for AS04RTD-A and up to 200 data points for AS06RTD-A and the recording time is 100 ms. The following uses AS04RTD-A as an example to demonstrate.

9. PID control

When the PV is in the range of ERR_DBW, the PLC runs the PID operation according to the E value. When the PV is over the SV, the cross status is set and the E value is read as 0 while running the PID operation, until the PV goes over the range of ERR_DBW. If PID_DE is 1, the PLC runs the derivative of PV. When the cross status is set, the Delta PV is read as 0 while running the derivative of the PID operation. As the example below shows, the PLC runs the PID operation in the A sections and reads the values of E and Delta PV as 0 while running the PID operation.

PID formula:

- 1. When the PID_MODE is set to 0, the mode is set to auto:
 - Independent formula & derivative of E (PID_EQ=0 & PID_DE=0)

$$CV = K_p E + K_i \int_{0}^{T} E dt + K_d \frac{dE}{dt} + BIAS$$

$$E = SV - PV$$
 or $E = PV - SV$

• Independent formula & derivative of PV (PID_EQ=0 & PID_DE=1)

$$CV = K_p E + K_i \int_{0}^{t} E dt - K_d \frac{dPV}{dt} + BIAS$$

$$E = SV - PV$$

$$or$$

$$CV = K_p E + K_i \int_{0}^{t} E dt + K_d \frac{dPV}{dt} + BIAS$$

$$E = PV - SV$$

• Dependent formula & derivative of E (PID_EQ=1 & PID_DE=0)

$$CV = K_c \left[E + \frac{1}{T_i} \int_{0}^{t} E dt + T_d \frac{dE}{dt} \right] + BIAS$$

$$E = SV - PV \quad or \quad E = PV - SV$$

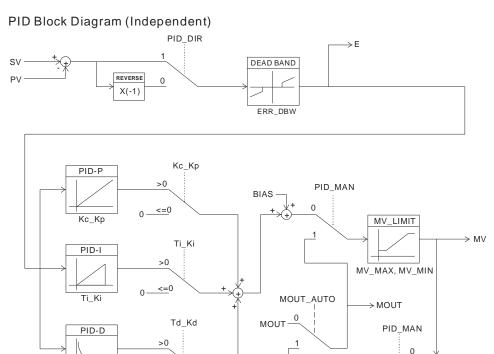
• Dependent formula & derivative of PV (PID_EQ=1 & PID_DE=1)

$$CV = K_c \left[E + \frac{1}{T_i} \int_0^t E dt - T_d \frac{dPV}{dt} \right] + BIAS$$

$$E = SV - PV$$

$$or$$

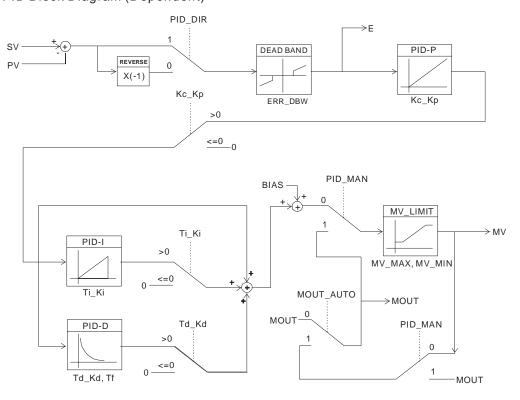
$$CV = K_c \left[E + \frac{1}{T_i} \int_0^t E dt + T_d \frac{dPV}{dt} \right] + BIAS$$


$$E = PV - SV$$

※ All the CVs stated above are the MVs in the formula.

MOUT

2. When you set the PID_MODE to 1, auto tuning mode is enabled. When auto tuning is complete, the value becomes 0 and switches off the auto tuning mode automatically.


PID Control Block Diagram:

PID Block Diagram (Dependent)

 $\mathsf{Td}_{\mathsf{Kd}}, \mathsf{Tf}$

0 -<=0

Note:

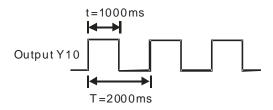
- 1. When tuning the parameters Kc_Kp, Ti_Ki, and Td_Kd (PID_MODE=0), set the Kc_Kp value first, and then set the Ti_Ki and Td_Kd values to 0. In a controlled environment, you can increase the values of Ti_Ki and Td_Kd. When the value of Kc_Kp is 1, the proportional gain is 100%. That is, the error values increase by a factor of one. When the proportional gain is less than 100%, the error values decrease. When the proportional gain is greater than 100%, the error values increase.
- The parameters that have been automatically tuned are not necessarily suitable for every controlled environment. You can, therefore, further modify the automatically-tuned parameters, but it is recommended that you modify only the values of Ti_Ki or Td_Kd.

5.2.7 Control Mode

Set the output cycle according to the environment. If the temperature is steady, the output cycle can be longer.

Formula of the output cycle:

> Output cycle width = MV (%) x output cycle


Execute the general pulse width modulation instruction (GBWN) to set output cycle width and output cycle sampling time to manage the cycle.

Example:

If the output cycle is 200 ms, then the output value is 50% after the PID algorithm is implemented.

 \triangleright Output cycle width = 50% × 2000 ms = 1000 ms

In other words, the GPWM instruction can be set to output cycle width = 1000 and output cycle = 2000.

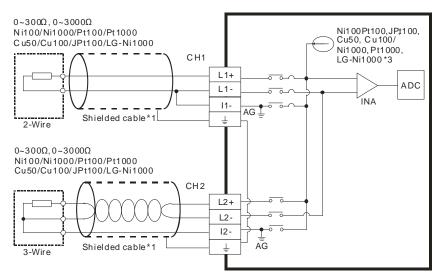
		CI	R#						
CH1	CH2	СНЗ	СН4	СН5	СН6	Operand	Function	Description	Range
600	630	660	690	720	750	PID_RUN	Enable the PID algorithm	1: the PID algorithm is implemented. 0: the output value (MV) is reset to 0, and the PID algorithm is not implemented.	0
601	631	661	691	721	751	SV	SV	Target value	0
602	632	662	692	722	752	PID_MODE	PID control mode	O: automatic control When PID_MAN is switched from 1 to 0, the output value (MV) is included in the automatic algorithm. 1: the parameters are tuned automatically for the temperature control. When the tuning is complete, the device is automatically reset to 0, and the parameters Kc_Kp, Ti_Ki, Td_Kd, and Tf are set appropriately.	0
603	633	663	693	723	753	PID_MAN	PID A/M mode	0: auto; the MV is output based on the PID algorithm. 1: manual; the MV is output based on the MOUT. When PID_MODE is also set to 1, this setting is ineffective.	0
604	634	664	694	724	754	MOUT_AU TO	MOUT automatic	0: normal; the MOUT does not vary with the MV.	0

		CI	₹#						
CH1	CH2	СНЗ	CH4	CH5	СН6	Operand	Function	Description	Range
							change mode	1: auto; the MOUT varies with the MV.	
605	635	665	695	725	755	Auto tuning dead band	Auto tuning non-action zone	Range: 0–32000, used when SV is in the ±dead band in auto tuning mode.	0
606 607	636 637	666 667	696 697	726 727	756 757	Кс_Кр	Calculated proportional coefficient (Kc or Kp)	Kc_Kp are floating-point numbers. If the P coefficient is less than 0, the Kc_Kp is 0. Independently, if Kc_Kp is 0, it is not controlled by P.	3.846
608 609	638 639	668 669	698 699	728 729	758 759	Ti_Ki	Integral coefficient (Ti or Ki)	Ti_Ki are floating-point numbers. If the calculated coefficient I is less than 0, Ti_Ki is 0. If Ti_Ki is 0, it is not controlled by I.	0.013
610 611	640 641	670 671	700 701	730 731	760 761	Td_Kd	Derivative coefficient (Td or K _d)	Td_Kd are floating-point numbers. If the calculated coefficient D is less than 0, Td_Kd is 0. If Ti_Ki is 0, it is not controlled by D.	190.07
612 613	642 643	672 673	702 703	732 733	762 763	Τf	Derivate-acti on time constant	If the derivate-action time constant is less than 0, Tf is 0 and it is not controlled by the derivate-action time constant.	4.941
614	644	674	704	734	764	PID_EQ	PID formula types	0: independent formula 1: dependent formula	0
615	645	675	705	735	765	PID_DE	The calculation of the PID derivative	O: use the variations in the error (E) to calculate the control value of the derivative (derivative of	0

		CI	R#					D	
CH1	CH2	СНЗ	СН4	СН5	СН6	Operand	Function	Description	Range
							error	E). 1: use the variations in the PV to calculate the control value of the derivative (derivative of PV).	
616	646	676	706	736	766	PID_DIR	PID forward/ reverse direction	0: heating action (E=SV-PV) 1: cooling action (E=PV-SV)	0
617	647	677	707	737	767	ERR_DBW	Range within which the error value is counted as 0	The error value (E) is the difference between the SV and the PV. When this setting is 0, the function is not enabled. When this setting is enabled, the CPU module checks whether the present difference is less than the absolute value of ERR_DBW, and it checks whether the present difference meets the cross status condition. If the present difference is less than the absolute value of ERR_DBW and it meets the cross status condition, the present error is counted as 0, and the PID algorithm is implemented. Otherwise the present error is brought into the PID algorithm normally.	0
618	648	678	708	738	768	α value	Integral sum	Range: 0–100	31

		CI	₹#			On	F	Bassintia	D
CH1	CH2	СНЗ	СН4	СН5	СН6	Operand	Function	Description	Range
619	649	679	709	739	769	β value	Integral sum	Unit: 0.01	0
620	650	680	710	740	770	MOUT	Manual output value (MOUT)	When PID_MAN is set to 1, the MV value is output as this manual MOUT value, between MV_MAX and MV_MIN. Range: 0–1000 (0%–100%)	0
621	651	681	711	741	771	BIAS	Feedforwa rd output value	Feedforward output value, used for the PID feedforward	0
622 623	652 653	682 683	712 713	742 743	772 773	MV	Output value (MV)	A floating-point number Range: 0–100 Unit: %	
624 625	654 655	684 685	714 715	744 745	774 775	I_MV	Accumulat ed integral value	Floating-point format. The accumulated integral value is temporarily stored for reference. When the MV is out of the range 0%–100%, the accumulated integral value in I_MV is unchanged.	
626	656	686	716	746	776	CYCLE	Sampling time (T _S)	When this instruction is read, the PID algorithm is implemented according to the sampling time, and the MV is refreshed. If T _S is less than 1, it is read as 1. If T _S is larger than 1,000, it is read as 1,000. Unit: 100 ms	1

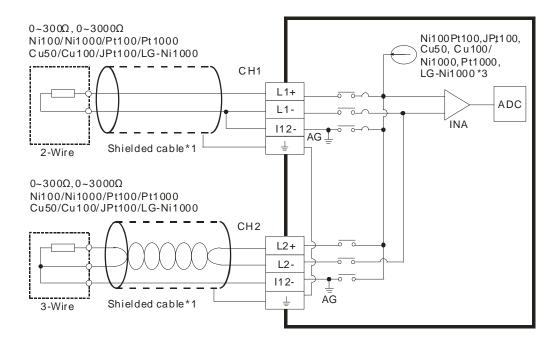
5.2.8 Wiring


Precautions

To ensure the analog-to-digital module functions well and reliably, the external wiring must prevent noise. Before you install the cables, follow the precautions below.

- (1) To prevent a surge and induction, the AC cable and the input signal cables that are connected to the ASRTD Series must be separate cables.
- (2) Do not install the cable near a main circuit, a high-voltage cable, or a cable connected to a load which is not a PLC. In addition, the cable must not be bound to a main circuit, a high-voltage cable, or a cable connected to a load which is not a PLC.
- (3) Ground shielded cables and hermetically sealed cables separately.
- (4) Terminals with insulation sleeves cannot be arranged as a terminal block, so you should cover the terminals with insulation tubes.
- (5) Note: use cables with the same length (less than 200 m) and use wire resistance of less than 20 ohm.

External wiring


(1) AS04RTD-A

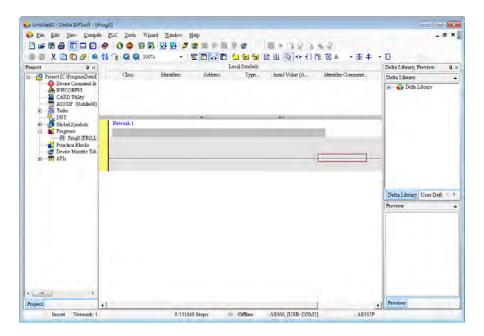
- *1. Use shielded twisted pair cables for Ni100/Ni1000, Pt100/Pt1000, Cu50/Cu100, JPt100, and LG-Ni1000 temperature sensors, and keep them separate from power cables and other cables that generate noise. Use a three-wire temperature sensor. If you must use a two-wire temperature sensor, Ln+ and ln+ must be short-circuited, and Ln- and ln- also must be short-circuited (where n is between 1–4).
- *2. If you want to measure resistance between 0-300 Ω , use a two-wire or three-wire sensor instead of a four-wire sensor.

*3. You must select an appropriate sensor. If you are using a Ni100 temperature sensor, a Pt100 sensor, a JPt100, a Cu50/Cu100, or a resistance sensor, the internal excitation current is 1.53 mA. If you are using a Ni1000 temperature sensor, a Pt1000 temperature sensor, or a LG-Ni1000 sensor, the internal excitation current is 204.8 μA.

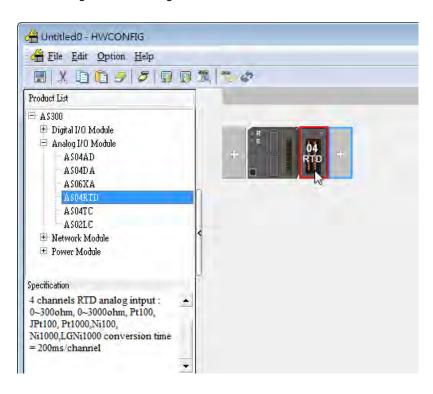
(2) AS04RTD-A

- *1. Use shielded twisted pair cables for Ni100/Ni1000, Pt100/Pt1000, Cu50/Cu100, JPt100, and LG-Ni1000 temperature sensors, and keep them separate from power cables and other cables that generate noise. Use a three-wire temperature sensor. If you must use a two-wire temperature sensor, Ln+ and ln+ must be short-circuited, and Ln- and ln- also must be short-circuited (where n is between 1–4).
 - *2. If you want to measure resistance between 0-300 Ω , use a two-wire or three-wire sensor instead of a four-wire sensor.
- *3. You must select an appropriate sensor. If you are using a Ni100 temperature sensor, a Pt100 sensor, a JPt100, a Cu50/Cu100, or a resistance sensor, the internal excitation current is 1.0389 mA. If you are using a Ni1000 temperature sensor, a Pt1000 temperature sensor, or a LG-Ni1000 sensor, the internal excitation current is 208.3 μA.

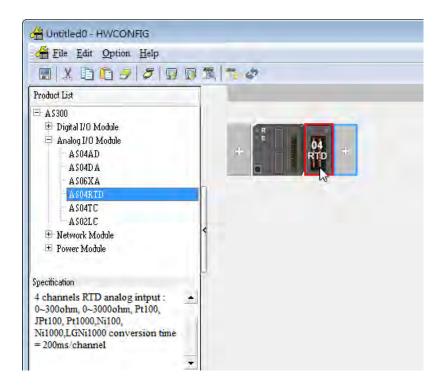
5.2.9 LED Indicators

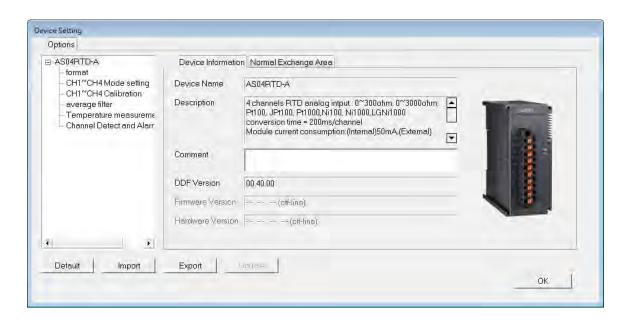

Number	Name	Description
		Operating status of the module
1	RUN LED Indicator	ON: the module is running.
		OFF: the module is not running.
		Error status of the module
2	ERROR LED	ON: a serious error exists in the module.
2	Indicator	OFF: the module is operating normally.
		Blink: a minor error exists in the module.
	Digital-to-Analog	Digital-to-analog conversion status
3	Conversion	Blinking: conversion is in process.
	Indicator	OFF: conversion has stopped.

5.3. HWCONFIG in ISPSoft

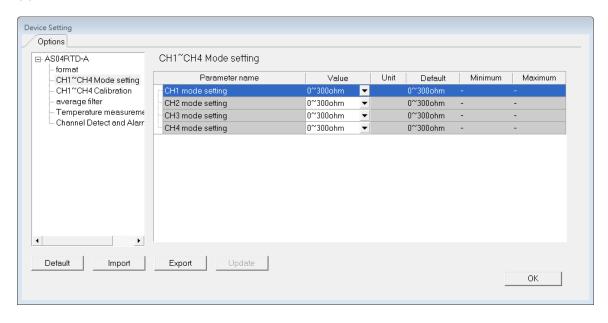

5.3.1 Initial Setting

The following uses AS04RTD-A as an example to demonstrate.

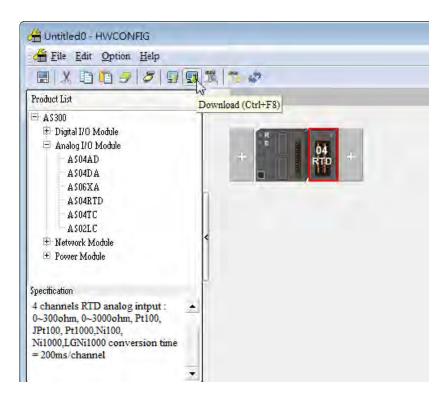

(1) Start ISPSoft and double-click **HWCONFIG**.



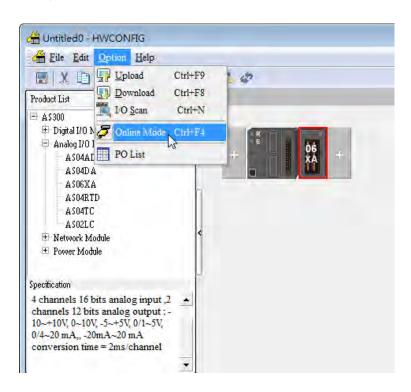
(2) Select a module and drag it to the working area.



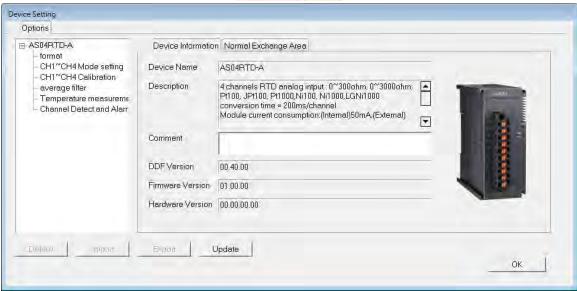
(3) Double-click the module in the working area to open the Device Setting page.



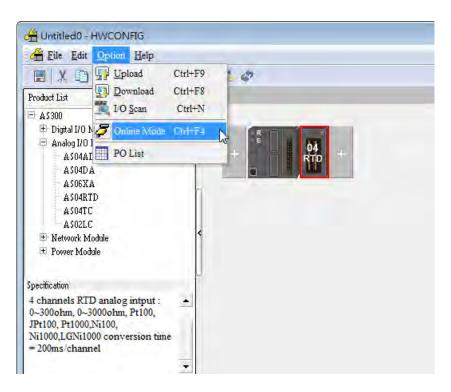
(4) Choose the parameter, set the values, and click **OK**.

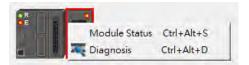


(5) Click **Download** on the toolbar to download the parameters. Note that you cannot download the parameters while the CPU module is running.

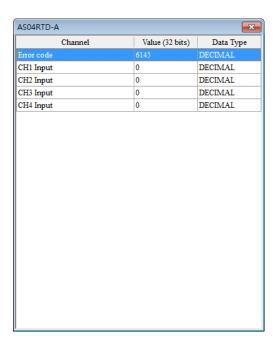

5.3.2 Checking the Version of a Module

(1) On the Option menu, click Online Mode.

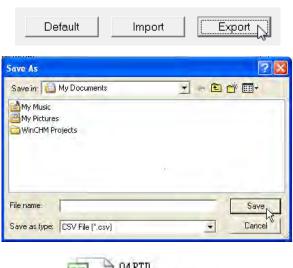

(2) Double-click the module to open the Device Setting page. The versions of both the firmware and the hardware are displayed.



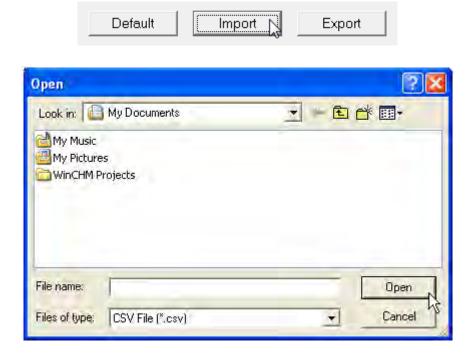
5.3.3 Online Mode


(1) On the Option menu, click Online Mode.

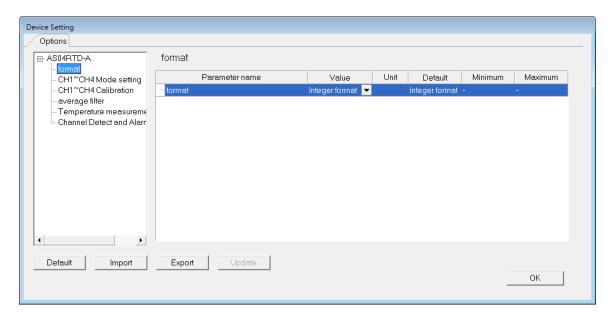
(2) Right-click the module and click Module Status.

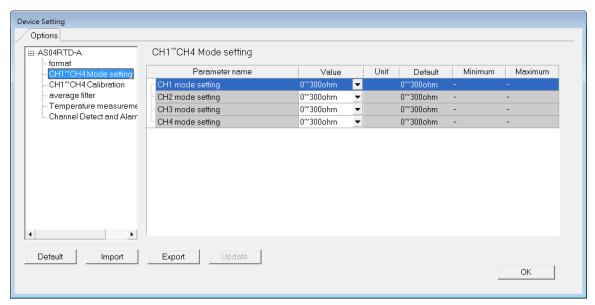


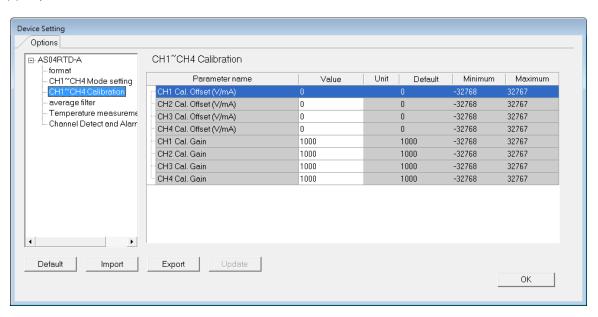
(3) View the module status.


5.3.4 Importing/Exporting a Parameter File

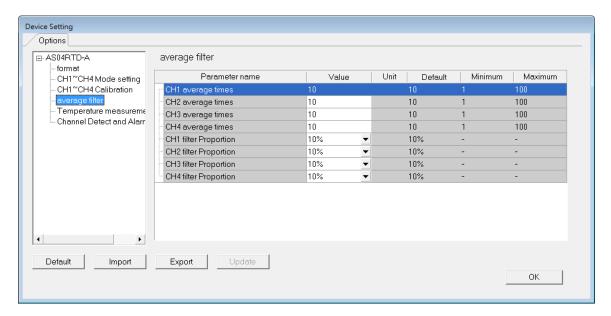
(1) Click **Export** in the Device Setting dialog box to save the current parameters as a CSV file (.csv).

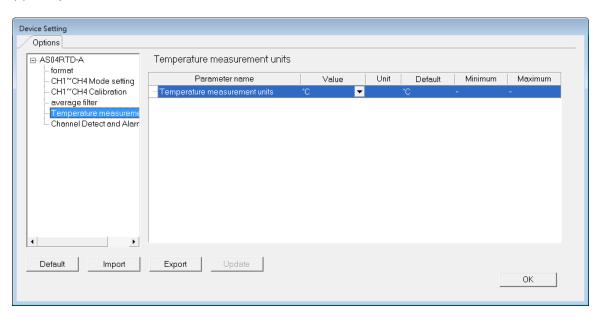


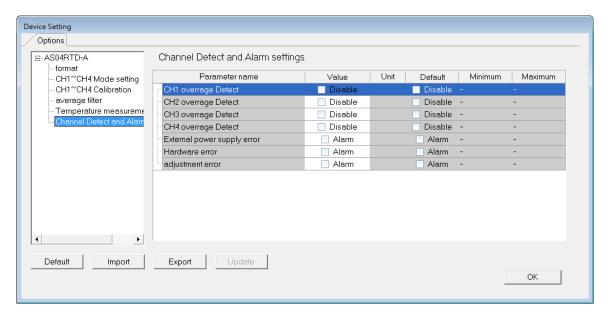

(2) Click Import in the Device Setting dialog box and select a CSV file to import saved parameters.


5.3.5 Parameters

(1) The input modes of the channels




(3) Input CH1-CH4 calibration


(4) Input average filter

(5) Temperature measurement

(6) Input channel detection and alarm settings

5.4 Troubleshooting

5.4.1 Error Codes

Error Code	Description	A↔ D LED	ERROR LED Indicator
16#1605	Hardware failure	OFF	ON
16#1607	The external voltage is abnormal.	OFF	ON
16#1608	The factory calibration is abnormal.	OFF	ON
16#1801	The external voltage is abnormal.	OFF	Blinking
16#1802	Hardware failure	OFF	Blinking
16#1804	The factory calibration is abnormal.	OFF	Blinking
16#1808	The signal received by channel 1 exceeds the range of inputs that the hardware can receive.		
16#1809	The signal received by channel 2 exceeds the range of inputs that the hardware can receive.	Run: blinking	Blinking
16#180A	The signal received by channel 3 exceeds the range of inputs that the hardware can receive.	Stop: OFF	Billikilig
16#180B	The signal received by channel 4 exceeds the range of inputs that the hardware can receive.		

Error	Description	A↔ D LED	ERROR LED
Code	2000 i pilon	Indicator	Indicator
16#180C	The signal received by channel 5 exceeds the range of inputs that		
10#1000	the hardware can receive.		
16#180D	The signal received by channel 6 exceeds the range of inputs that		
10#1000	the hardware can receive.		

5.4.2 Troubleshooting Procedure

Description	Procedure	
The external voltage is abnormal	Ensure the external 24 V power supply to the module is	
The external voltage is abnormal.	functioning normally.	
Hardware failure	Return the module to the factory for repair.	
Internal error		
The factory calibration is abnormal.	Contact the factory.	
The signal received by channel 1 exceeds the	Charly the signal graphy and by changed 4	
range of inputs that the hardware can receive.	Check the signal received by channel 1.	
The signal received by channel 2 exceeds the	Check the signal received by channel 2.	
range of inputs that the hardware can receive.	Check the Signal received by Chainlet 2.	
The signal received by channel 3 exceeds the	Check the signal received by channel 3.	
range of inputs that the hardware can receive.	Check the signal received by channel 5.	
The signal received by channel 4 exceeds the	Check the signal received by channel 4.	
range of inputs that the hardware can receive.	Check the signal received by channel 4.	
The signal received by channel 5 exceeds the	Check the signal received by channel 5.	
range of inputs that the hardware can receive.	Chock the digital received by challing c.	
The signal received by channel 6 exceeds the	Check the signal received by channel 6.	
range of inputs that the hardware can receive.	Shock and digital received by chairments.	

5.4.3 State of the Connection

State of connection		on	Channal value
L+	L-	l-	Channel value
•	•	•	Maximum value for the channel
•	•		Maximum value for the channel

State of connection		on	Channel value	
L+	L-	I-	Channel value	
•		•	Maximum value for the channel	
•			Maximum value for the channel	
	•	•	Maximum value for the channel	
	•		Maximum value for the channel	
		•	Minimum value for the channel*1	

^{•:} Disconnection

^{*1:} for AS06RTD Series: in the modes of $0-300\Omega$ and $0-3000\Omega$, it cannot detect I- state of connection.

Chapter 6 Temperature Measurement Module AS04/08TC

Table of Contents

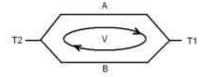
6.1 C	Overview	6-2
6.1.1	Characteristics	6-3
6.2 S	Specifications and Functions	6-4
6.2.1	Specifications	6-4
6.2.2	Profile	6-5
6.2.3	Arrangement of Terminals	6-6
6.2.4	ASO4TC Control Registers	6-6
6.2.5	ASO8TC Control Registers	6-9
6.2.6	Functions	6-15
6.2.7	Control Mode	6-21
6.2.8	Wiring	6-28
6.2.9	LED Indicators	
6.3 F	HWCONFIG in ISPSoft	6-30
6.3.1	Initial Setting	6-30
6.3.2	Checking the Version of a Module	6-33
6.3.3	Online Mode	6-34
6.3.4	Importing/Exporting a Parameter File	6-35
6.3.5	Parameters	6-36
6.4 T	roubleshooting	6-39
6.4.1	Error Codes	6-39
6.4.2	Troubleshooting Procedure	6-40

6.1 Overview

This chapter describes the specifications for the ASTC-A module, its operation, and its programming. The AS04TC-A is a temperature measurement module that converts temperatures received from thermocouples (type J, K, R, S, T, E, N, or B, with ±100 mV voltage inputs) into digital signals. You can select either Celsius (resolution: 0.1° C) or Fahrenheit (resolution: 0.1° F) as the unit of measurement.

An introduction to thermocouples

A thermocouple uses the Seebeck effect to measure differences in temperature. Generally speaking, a thermocouple consists of two conductors of different materials that produce a voltage at the point where the two conductors contact. The voltage produced depends on the difference of temperature between the junctions with other parts of those conductors, and it ranges from several dozen microvolts to several thousand microvolts. Because the voltage is so low, it needs to be amplified.


Differential operations are used to eliminate external noise. Thermocouples are more stable than thermistors, resistance thermometers, and thermal resistors, so thermocouples are widely used in industrial applications.

A thermocouple consists of a circuit having two wires of different metals or metal alloys welded together or joined at both ends. One of the junctions—normally the cold junction—is maintained at a known reference temperature, and the other junction is at the temperature to be sensed. A temperature gradient across the junction of the wires gives rise to an electric potential according to the Seebeck effect. The voltage produced is proportional to the difference of temperature between the junctions with other parts of those conductors.

The voltage can be derived from the following equation.

$$V = \int_{T_1}^{T_2} (Q_A - Q_B) dT$$
 (A)

where Q_A and Q_B are the thermopowers (Seebeck coefficient) of the metals A and B, and T_1 and T_2 are the temperatures of the two junctions.

Principle of operation

Because Q_A and Q_B are almost unrelated to temperature, formula (A) above can be approximated as in equation (B).

$$V=\alpha(T_2-T_1)$$
 (B)

There are two types of thermocouple thermometers: wrapped thermocouples and bare thermocouples. A wrapped thermocouple is wrapped in protective metal, and is similar to an electric spoon in appearance. Wrapped thermocouples are used to measure temperature of liquid, and bare thermocouples are used to measure temperature of gas.

6.1.1 Characteristics

(1) Select a sensor based on its practical application.

Type J thermocouples, type K thermocouples, type R thermocouples, type S thermocouples, type T thermocouples, type E thermocouples, or type N thermocouples, with ±100 mV voltage inputs

(2) Select a module based on its practical application.

AS04TC-A: Has four channels. Inputs received by a channel are temperatures.

AS08TC-A: Has eight channels. Inputs received by a channel are temperatures.

(3) High-speed conversion

A temperature is converted into a digital signal at a speed of 200 ms per channel.

(4) High accuracy

Conversion accuracy: the error range is ±0.5% of the input at ambient temperature of 25° C ±5° C.

(5) Disconnection detection

When a sensor is disconnected, the module produces an alarm or a warning.

(6) PID control

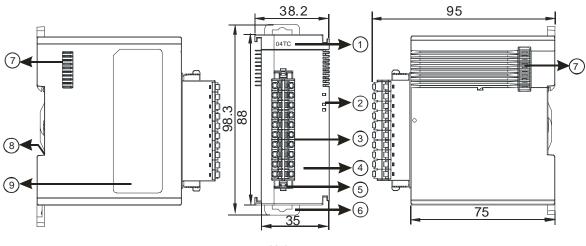
An object's temperature can be maintained through PID control actions.

(7) Use the utility software to configure the module.

The HWCONFIG software is built into ISPSoft. You can set modes and parameters directly in HWCONFIG without spending time writing programs to set registers to manage functions.

6.2 Specifications and Functions

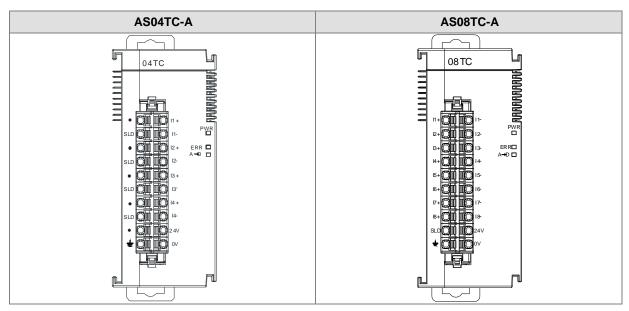
6.2.1 Specifications


Electrical specifications

Module Name	AH04TC-A	AH08TC-A			
Number of Analog Inputs	4	8			
Applicable Sensor	Type J, type K, type R, type S, type T, type E, type N, and type B thermocouples; ±100 mV voltage inputs				
Supply Voltage	24 VDC (20.4–28.8 VDC) (-15% to +20)%)			
Connector Type	Removable terminal block				
Overall Accuracy	Overall Accuracy $25^{\circ} \text{ C/77}^{\circ} \text{ F: The error range allowed is } \pm 0.5\% \text{ of full scale.}$ $-20^{\circ} \text{ C to } +60^{\circ} \text{ C/-4}^{\circ} \text{ F to } +140^{\circ} \text{ F: the error range allowed is } \pm 1\% \text{ of full scale.}$				
Conversion Time	200 ms/channel				
Isolation	An analog circuit is isolated from a digital circuit by a digital integrated circ optocoupler, and the analog channels are isolated from one another by optocouplers. Isolation between a digital circuit and the ground: 500 VDC Isolation between an analog circuit and the ground: 500 VDC Isolation between an analog circuit and a digital circuit: 500 VDC				
	Isolation between the 24 VDC and the ground: 500 VDC Isolation between analog channels: 120 VAC				
Weight	115g 125g				

Functional specifications

Analog-to-Digital Conversion	Centigrade (°C)	Fahrenheit (°F)	Voltage Input
Rated Input Range	Type J: -100° C to +1,150° C Type K: -100° C to +1,350° C Type R: 0–1,750° C Type S: 0–1,750° C Type T: -1° C to +390° C Type E: -150° C to +980° C Type N: -150° C to +1,280° C Type B: 200–1,800° C	Type J: -148° F to +2,102° F Type K: -148° F to +2,462° F Type R: 32–3,182° F Type S: 32–3,182° F Type T: -238° F to +734° F Type E: -238° F to +1,796° F Type N: -238° F to +2,336° F Type B: 32–3,182° F	±100 mV
Average Function	Range: 1-100		
Self-Diagnosis	Disconnection detection		


6.2.2 Profile

	:4.	
u	nıt:	mm

Number	Name	Description
1	Model Name	Model name of the module
		Operating status of the module
	RUN LED Indicator	ON: the module is running.
		OFF: the module is not running.
		Error status of the module
2	ERROR LED Indicator	ON: a serious error exists in the module.
	ENNOR ELD Indicator	OFF: the module is operating normally.
		Blink: a minor error exists in the module.
	Digital to Analog Conversion Indicator	Digital-to-analog conversion status
		Blinking: conversion is in process.
		OFF: conversion has stopped.
3	Removable Terminal Block	The inputs are connected to transducers.
	Removable Terminal Block	The outputs are connected to loads to be driven.
4	Arrangement of the	Arrangement of the terminals
	Input/Output Terminals	Arrangement of the terminals
5	Clip	For removing the terminal block
6	DIN rail clip	Secures the module onto the DIN rail
7	Module connecting set	Connects the modules
8	Ground clip	

6.2.3 Arrangement of Terminals

6.2.4 ASO4TC Control Registers

CR#	Name	Description	Defaults
0	Format Setup	O: integer format 1: floating point format	0
1	Channel 1 mode setup	0: closed	
2	Channel 2 mode setup	1: -100 mV to +100 mV 2: J-Type 3: K-Type 4: R-Type	1
3	Channel 3 mode setup	5: S-Type 6: T-Type 7: E-Type 8: N-Type	·
4	Channel 4 mode setup	9: B-Type	
5	Channel 1 offset		0
6	Channel 2 offset	Range: -32768 to +32767	
7	Channel 3 offset	Nange32700 to +32707	
8	Channel 4 offset		
9	Channel 1 gain		
10	Channel 2 gain	Range: -32768 to +32767	1000
11	Channel 3 gain		

6

CR#	Name	Description	Defaults
12	Channel 4 gain		
13	Channel 1 average times		40
14	Channel 2 average times	Devent 4 400	
15	Channel 3 average times	Range: 1–100	10
16	Channel 4 average times		
17	Channel 1 filter average percentage		
18	Channel 2 filter average percentage	Range: 0–3	4
19	Channel 3 filter average percentage	Unit: ±10%	1
20	Channel 4 filter average percentage		
24	Heite of town a section	0: Fahrenheit	•
21	Units of temperature	1: Celsius	0
		0: open channel alarm	
		1: close channel alarm	
		bit0: channel 1	
		bit1: channel 2	
		bit2: channel 3	
		bit3: channel 4	
22	Channel alarm setup		0
		0: warning	
		1: alarm	
		bit8: error in the power supply	
		bit9: error in the module hardware	
		bit10: error in calibration	
		bit11: error in CJC temperature	
201		16#0101: record the peak value again for	
	Instruction set	channel 1	0
		16#0102: record the peak value again for	U
		channel 2	

CR#	Name	Description	Defaults
		16#0104: record the peak value again for	
		channel 3	
		16#0108: record the peak value again for	
		channel 4	
		16#010F: record the peak values again for	
		channels 1–4	
		16#0201: enable recording for channel 1	
		16#0202: enable recording for channel 2	
		16#0204: enable recording for channel 3	
		16#0208: enable recording for channel 4	
		16#020F: enable recording for channels 1-4	
		16#0211: disable recording for channel 1	
		16#0212: disable recording for channel 2	
		16#0214: disable recording for channel 3	
		16#0218: disable recording for channel 4	
		16#021F: disable recording for channels 1–4	
		16#0502: restore default settings	
	The maximum peak value		
210	for channel 1		-
	The maximum peak value		
211	for channel 2	Integer format; the maximum peak value for	-
040	The maximum peak value	analog inputs	
212	for channel 3		-
213	The maximum peak value		
213	for channel 4		-
214	The minimum peak value for		_
214	channel 1		
215	The minimum peak value for		
210	channel 2	Integer format; the minimum peak value for	
216	The minimum peak value for	analog inputs	
210	channel 3		
217	The minimum peak value for		_
211	channel 4		
222	The time to record for	Unit: 100 ms	1

CR#	Name	Description	Defaults
	channel 1	Range: 1–100	
223	The time to record for channel 2	The time to record the digital value for the channels	1
224	The time to record for channel 3		1
225	The time to record for channel 4		1
240	The number of records for channel 1		0
241	The number of records for channel 2	Range: 0-500, display the current records	0
242	The number of records for channel 3		0
243	The number of records for channel 4		0
4000- 4499	Records for channel 1	500 records for channel 1	
4500- 4999	Records for channel 2	500 records for channel 2	
5000- 5499	Records for channel 3	500 records for channel 3	
5500- 5999	Records for channel 4	500 records for channel 4	

6.2.5 ASO8TC Control Registers

CR#	Name	Description	Defaults	
0	Format Setup	integer format I: floating point format	0	
1	Channel 1 mode setup	0: closed		
2	Channel 2 mode setup	1: -100 mV to +100 mV 2: J-Type	1	
3	Channel 3 mode setup	3: K-Type 4: R-Type		

CR#	Name	Description	Defaults	
4	Channel 4 mode setup	5: S-Type 6: T-Type		
5	Channel 5 mode setup	7: E-Type		
		8: N-Type 9: B-Type		
6	Channel 6 mode setup			
7	Channel 7 mode setup			
8	Channel 8 mode setup			
9	Channel 1 offset			
10	Channel 2 offset			
11	Channel 3 offset			
12	Channel 4 offset			
13	Channel 5 offset	Range: -32768 to +32767	0	
14	Channel 6 offset			
15	Channel 7 offset			
16	Channel 8 offset			
17	Channel 1 gain			
18	Channel 2 gain			
19	Channel 3 gain			
20	Channel 4 gain	Range: -32768 to +32767	1000	
21	Channel 5 gain	Nange32700 to +32707	1000	
22	Channel 6 gain			
23	Channel 7 gain			
24	Channel 8 gain			
25	Channel 1 average times			
26	Channel 2 average times			
27	Channel 3 average times			
28	Channel 4 average times	Panga: 1, 100	10	
29	Channel 5 average times	Range: 1–100	10	
30	Channel 6 average times			
31	Channel 7 average times			
32	Channel 8 average times			

CR#	Name	Description	Defaults	
33	Channel 1 filter average percentage			
34	Channel 2 filter average percentage			
35	Channel 3 filter average percentage			
36	Channel 4 filter average percentage	Range: 0–3	1	
37	Channel 5 filter average percentage	Unit: ±10%		
38	Channel 6 filter average percentage			
39	Channel 7 filter average percentage			
40	Channel 8 filter average percentage			
41	Units of temperature	0: Fahrenheit 1: Celsius	0	
42	Channel alarm setup	0: open channel alarm 1: close channel alarm bit0: channel 1 bit1: channel 2 bit2: channel 3 bit3: channel 4 bit4: channel 5 bit5: channel 6 bit6: channel 7 bit7: channel 8 0: warning 1: alarm bit8: error in the power supply	0	

CR#	Name	Description	Defaults
		bit10: error in calibration	
		bit11: error in CJC temperature	
		16#0101: record the peak value again for	
		channel 1	
		16#0102: record the peak value again for	
		channel 2	
		16#0104: record the peak value again for	
		channel 3	
		16#0108: record the peak value again for	
		channel 4	
		16#0110: record the peak value again for	
		channel 5	
		16#0120: record the peak value again for	
		channel 6	
		16#0140: record the peak value again for	
		channel 7	
		16#0180: record the peak value again for	
204	In atmostices and	channel 8	0
201	Instruction set	16#01FF: record the peak value again for	0
		channels 1-8	
		16#0201: enable recording for channel 1	
		16#0202: enable recording for channel 2	
		16#0204: enable recording for channel 3	
		16#0208: enable recording for channel 4	
		16#0210: enable recording for channel 5	
		16#0220: enable recording for channel 6	
		16#0240: enable recording for channel 7	
		16#0280: enable recording for channel 8	
		16#02FF: enable recording for channels 1-8	
		16#0301: disable recording for channel 1	
		16#0302: disable recording for channel 2	
		16#0304: disable recording for channel 3	

CR#	Name	Description	Defaults
		16#0308: disable recording for channel 4	
		16#0310: disable recording for channel 5	
		16#0320: disable recording for channel 6	
		16#0340: disable recording for channel 7	
		16#0380: disable recording for channel 8	
		16#03FF: disable recording for channels 1-8	
		16#0501: restore default settings, clear setting	
		values in the Flash	
		16#0502: restore default settings, do not clear	
		setting values in the Flash	
210	The maximum peak value		_
210	for channel 1		
211	The maximum peak value		-
	for channel 2		
212	The maximum peak value		-
	for channel 3		
213	The maximum peak value		-
	for channel 4	Integer format; the maximum peak value for	
214	The maximum peak value	analog inputs	-
	for channel 5		
215	The maximum peak value for channel 6		-
	The maximum peak value		
216	for channel 7		-
	The maximum peak value		
217	for channel 8		-
	The minimum peak value for		
218	channel 1		-
040	The minimum peak value for		
219	channel 2	Integer format; the minimum peak value for	-
200	The minimum peak value for	analog inputs	
220	channel 3		-
221	The minimum peak value for		-

CR#	Name	Description	Defaults
	channel 4		
222	The minimum peak value for channel 5		-
223	The minimum peak value for channel 6		-
224	The minimum peak value for channel 7		-
225	The minimum peak value for channel 8		-
226	The time to record for channel 1		1
227	The time to record for channel 2		1
228	The time to record for channel 3		1
229	The time to record for channel 4	Unit: 100 ms Range: 1–100	1
230	The time to record for channel 5	The time to record the digital value for the channels	1
231	The time to record for channel 6		1
232	The time to record for channel 7		1
233	The time to record for channel 8		1
240	The number of records for channel 1		0
241	The number of records for channel 2		0
242	The number of records for channel 3	Range: 0-100, display the current records	0
243	The number of records for channel 4		0
244	The number of records for		0

CR#	Name	Description	Defaults
	channel 5		
245	The number of records for		0
	channel 6		
246	The number of records for		0
	channel 7		
247	The number of records for		0
	channel 8		
4000-	Records for channel 1	100 records for channel 1	-
4499			
4500-	Records for channel 2	100 records for channel 2	_
4999	Troopido foi orialino 2	100 1000100 101 0101111012	
5000-	Records for channel 3	100 records for channel 3	_
5499	records for channel 5	Too records for charmer 5	
5500-	Records for channel 4	100 records for channel 4	_
5999	Records for charmer 4	100 records for charmer 4	_
6000-	Records for channel 5	100 records for channel 5	
6199	Records for charmer 5	100 records for channel 5	-
6500-	D 1 (1 10		
6699	Records for channel 6	100 records for channel 6	-
7000-	B 1 () :-	100	
7199	Records for channel 7	100 records for channel 7	-
7500-			
7699	Records for channel 8	100 records for channel 8	-

6.2.6 Functions

Item	Function	Description
1	Enable/Disable a	1. Enable or disable a channel.
	Channel	2. If a channel is disabled, the total conversion time decreases.
2	Unit of Measurement	Select the unit of measurement: Fahrenheit or Celsius.
3	Calibration	Calibrate a linear curve.
4	Average Conversion values are averaged and filtered.	

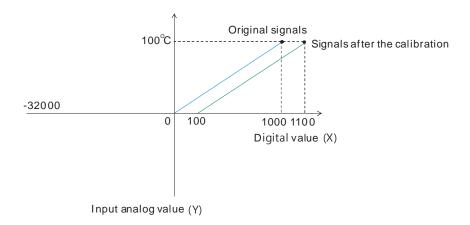
Item	Function	Description
5	Disconnection Detection	If the channel is open, the module can detect when it is disconnected. If the input is open-circuited, the module produces an alarm or a warning.
6	Channel Detection and Alarm	If an input signal exceeds the range of inputs that the hardware can receive, the module produces an alarm or a warning. You can disable this function.
7	Limit Detections for Channels	Save the maximum/minimum values for channels.
8	Records for Channels	Save the analog curves for channels.
9	PID Algorithm	PID control modes

1. Enable/Disable a Channel

An analog signal is converted into a digital signal at a rate of 200 ms per channel. If a channel is not used, you can disable it to decrease the total conversion time.

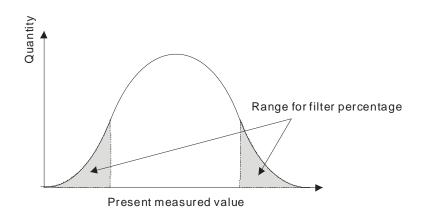
2. Unit of Measurement

Select the unit of measurement, Fahrenheit or Celsius, according to your needs.


3. Calibration

To make a curve meet specific needs, calibrate the curve by changing the offset and the gain. The calibration range depends on the range of inputs that the hardware can receive. The formula is:

$$Output = \frac{(Input \times Gain)}{1000} + Offset$$

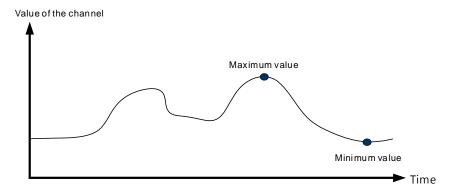

Example:

If the gain is 1000 and the offset is 0, the corresponding value for the original signal 0° C to 100° C is 0–1000. If you change the offset to 100, the calibrated value for the original signal 0° C to 100° C becomes 100–1100.

4. Average

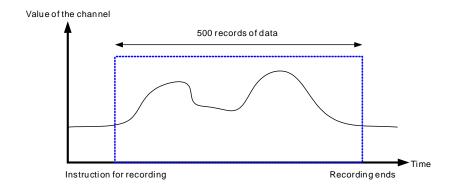
You can set the average value between 1–100. It is a steady value obtained from the sum of the recorded values. If the recorded values include an acute pulse due to unavoidable external factors, however, you may observe violent changes in the average value. Use the filtering function to exclude the acute pulses from the sum-up and equalization, so the computed average value is not affected by the acute recorded values. Set the filter percentage to the range of 0–3, where the unit is 10%. If you set the filter range to 0, for example, the system sums up all the recorded values and divides them to obtain the average value, but if you set the filter range to 1, the system excludes the bottom 10% and the top 10% of the values and averages only the remaining values to obtain the average value.

5. Disconnection Detection

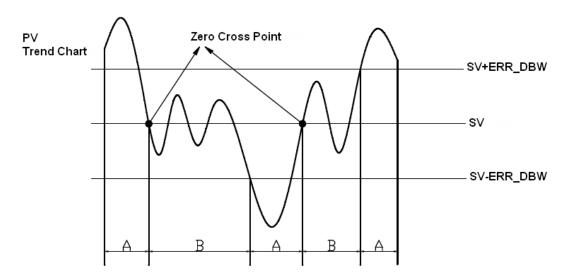

If the channel is open, the module can detect when it is disconnected. If the input is open-circuited, the module produces an alarm or a warning.

6. Channel Detection

If an input signal exceeds the allowable range of inputs that the hardware can receive, an error message appears and the Error LED blinks. You can disable this function so that the module does not produce an alarm or warning and the Error LED also does not blink when the input signal exceeds the input range.


7. Limit Detections for Channels

This function saves the maximum and minimum values for channels so that you can determine the peak to peak values.


8. Records for channels

Record the input values of the cyclic sampling for each channel. For AS04TC-A, the system saves up to 500 data points and the recording time is 10 ms. For example, if the conversion time is 2 ms and 4 channels are open, the recording time is 8 ms x 500 data points = 4 seconds in total. And the system saves up to 100 data points for AS08TC-A and the recording time is 100 ms. The following uses AS04TC-A as an example to demonstrate.

9. PID control

When the PV is in the range of ERR_DBW, the PLC runs the PID operation according to the E value. When the PV is larger than the SV, the cross status is set and the E value is read as 0 while running the PID operation, until the PV goes over the range of ERR_DBW. If PID_DE is 1, the PLC runs the derivative of PV. When the cross status is set, the Delta PV is read as 0 while running the derivative of the PID operation. As the example below shows, the PLC runs the PID operation in the A sections and reads the values of E and Delta PV as 0 while running the PID operation.

PID formula:

- 1. When the PID_MODE is set to 0, the mode is set to auto:
 - Independent formula & derivative of E (PID_EQ=0 & PID_DE=0)

$$CV = K_p E + K_i \int_{0}^{t} E dt + K_d \frac{dE}{dt} + BIAS$$

$$E = SV - PV \quad or \quad E = PV - SV$$

• Independent formula & derivative of PV (PID_EQ=0 & PID_DE=1)

$$CV = K_p E + K_i \int_{0}^{T} E dt - K_d \frac{dPV}{dt} + BIAS$$

$$E = SV - PV$$

$$or$$

$$CV = K_p E + K_i \int_{0}^{t} E dt + K_d \frac{dPV}{dt} + BIAS$$

$$E = PV - SV$$

• Dependent formula & derivative of E (PID_EQ=1 & PID_DE=0)

$$CV = K_c \left[E + \frac{1}{T_i} \int_{0}^{t} E dt + T_d \frac{dE}{dt} \right] + BIAS$$

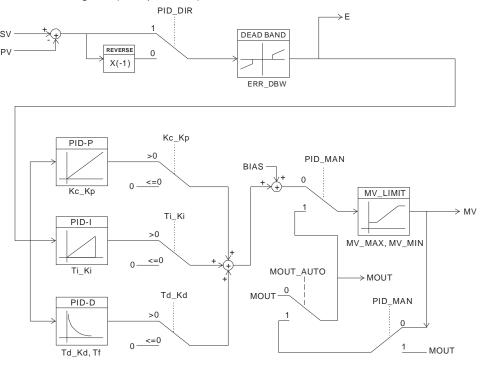
$$E = SV - PV \quad or \quad E = PV - SV$$

• Dependent formula & derivative of PV (PID_EQ=1 & PID_DE=1)

$$CV = K_c \left[E + \frac{1}{T_i} \int_{0}^{t} E dt - T_d \frac{dPV}{dt} \right] + BIAS$$

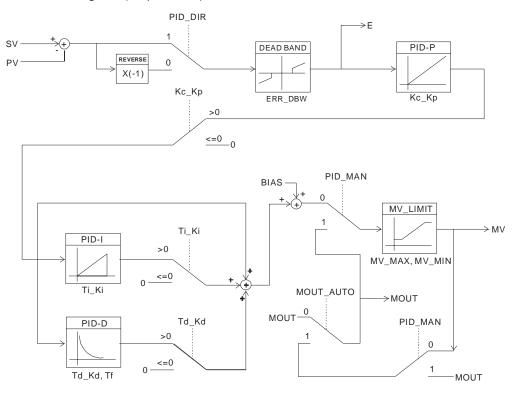
$$E = SV - PV$$

$$or$$


$$CV = K_c \left[E + \frac{1}{T_i} \int_{0}^{t} E dt + T_d \frac{dPV}{dt} \right] + BIAS$$

$$E = PV - SV$$

- * All the CVs stated above are the MVs in the formula.
- 2. When you set the PID_MODE to 1, auto tuning mode is enabled. When auto tuning is complete, the value becomes 0 and switches off the auto tuning mode automatically.


PID Control Block Diagram:

PID Block Diagram (Independent)

6

PID Block Diagram (Dependent)

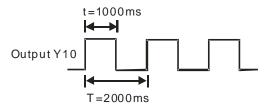
Note:

- 1. When tuning the parameters Kc_Kp, Ti_Ki, and Td_Kd (PID_MODE=0), set the Kc_Kp value first, and then set the Ti_Ki and Td_Kd values to 0. In a controlled environment, you can increase the values of Ti_Ki and Td_Kd. When the value of Kc_Kp is 1, the proportional gain is 100%. That is, the error values increase by a factor of one. When the proportional gain is less than 100%, the error values decrease. When the proportional gain is greater than 100%, the error values increase.
- 2. The parameters which have been automatically tuned are not necessarily suitable for every controlled environment. You can, therefore, further modify the automatically-tuned parameters, but it is recommended that you only modify the values of Ti_Ki or Td_Kd.

6.2.7 Control Mode

Set the output cycle according to the environment. If the temperature is steady, the output cycle can be longer.

Formula of the output cycle:


> Output cycle width = MV (%) x output cycle

Execute the general pulse with modulation instruction (GPWM) to set output cycle width and output cycle sampling time to manage the cycle.

Example:

 \triangleright Output cycle width = 50% × 2000 ms = 1000 ms

In other words, the GWPM instruction can be set to output cycle width = 1000 and output cycle = 2000.

	CR#					5					
CH1	CH2	СНЗ	CH4	СН5	СН6	CH7	СН8	Operand	Function	Description	Range
600	630	660	690	720	750	780	810	PID_RUN	Enable the PID algorithm	1: the PID algorithm is implemented. 0: the output value (MV) is reset to 0, and the PID algorithm is not implemented.	0
601	631	661	691	721	751	781	811	SV	SV	Target value	0
602	632	662	692	722	752	782	812	PID_MODE	PID control mode	O: automatic control When PID_MAN is switched from 1 to 0, the output value (MV) is included in the automatic algorithm. 1: the parameters are tuned automatically for the temperature control. When	0

6

CR#									-	D	
CH1	CH2	СНЗ	СН4	СН5	СН6	СН7	СН8	Operand	Function	Description	Range
										the tuning is complete, the device is automatically reset to 0, and the parameters Kc_Kp, Ti_Ki, Td_Kd, and Tf are set appropriately.	
603	633	663	693	723	753	783	813	PID_MAN	PID A/M mode	O: auto; the MV is output based on the PID algorithm. 1: manual; the MV is output based on the MOUT. When PID_MODE is also set to 1, this setting is ineffective.	0
604	634	664	694	724	754	784	814	MOUT_AUTO	MOUT automatic change mode	0: normal; the MOUT does not vary with the MV. 1: auto; the MOUT varies with the MV.	0
605	635	665	695	725	755	785	815	Auto tuning dead band	Auto tuning non-action zone	Range: 0–32000, used when SV is in the ±dead band in auto tuning mode.	0

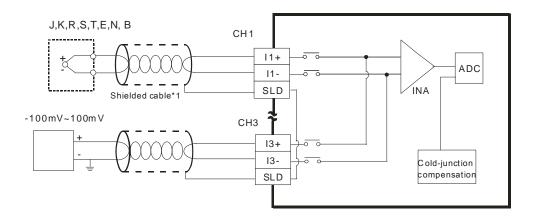
			CI	₹#				Onevend	Function	Description	Damas
CH1	CH2	СНЗ	СН4	СН5	СН6	СН7	СН8	Operand	Function	Description	Range
606 607	636 637	666 667	696 697	726 727	756 757	786 787	816 817	Кс_Кр	Calculated proportional coefficient (Kc or Kp)	Kc_Kp are floating-point numbers. If the P coefficient is less than 0, the Kc_Kp is 0. Independently, if Kc_Kp is 0, it is not controlled by P.	3.846
608	638 639	668 669	698 699	728 729	758 759	788 789	818 819	Ti_Ki	Integral coefficient (Ti or Ki)	Ti_Ki are floating-point numbers. If the calculated coefficient I is less than 0, Ti_Ki is 0. If Ti_Ki is 0, it is not controlled by I.	0.013
610 611	640 641	670 671	700 701	730 731	760 761	790 791	820 821	Td_Kd	Derivative coefficient (Td or K _d)	Td_Kd are floating-point numbers. If the calculated coefficient D is less than 0, Td_Kd is 0. If Ti_Ki is 0, it is not controlled by D.	190.078
612 613			702 703			792 793		Tf	Derivate-action time constant	If the derivate-action time constant is less than 0, Tf is 0 and it is not controlled by the derivate-action time constant.	4.941

			CI	₹#						-	_
СН1	CH2	СНЗ	СН4	CH5	СН6	СН7	СН8	Operand	Function	Description	Range
614	644	674	704	734	764	794	824	PID_EQ	PID formula types	0: independent formula 1: dependent formula	0
615	645	675	705	735	765	795	825	PID_DE	The calculation of the PID derivative error	O: use the variations in the error (E) to calculate the control value of the derivative (derivative of E). 1: use the variations in the PV to calculate the control value of the derivative (derivative of PV).	0
616	646	676	706	736	766	796	826	PID_DIR	PID forward/ reverse direction	0: heating action (E=SV-PV) 1: cooling action (E=PV-SV)	0
617	647	677	707	737	767	797	827	ERR_DBW	Range within which the error value is counted as 0	The error value (E) is the difference between the SV and the PV. When this setting is 0, the function is not enabled. When this setting is enabled, the CPU module checks	0

			CI	R#						B	
CH1	CH2	СНЗ	СН4	CH5	СН6	СН7	СН8	Operand	Function	Description	Range
										whether the present difference is less than the absolute value of ERR_DBW, and it checks whether the present difference meets the cross status condition. If the present difference is less than the absolute value of ERR_DBW and it meets the cross status condition, the present error is counted as 0, and the PID algorithm is implemented. Otherwise the present error is brought into the PID algorithm normally.	
618	648	678	708	738	768	798	828	α value	Integral sum	Range: 0-100	31
619	649	679	709	739	769	799	829	β value	Integral sum	Unit: 0.01	0
620	650	680	710	740	770	800	830	MOUT	Manual output value (MOUT)	When PID_MAN is set to 1, the MV value is output as this manual MOUT value, between MV_MAX and MV_MIN.	0

CR#										-	
CH1	CH2	СНЗ	СН4	CH5	СН6	СН7	СН8	Operand	Function	Description	Range
										Range: 0-1000 (0%-100%)	
621	651	681	711	741	771	801	831	BIAS	Feedforward output value	Feedforward output value, used for the PID feedforward	0
622 623		682 683		742 743	772 773	802 803		MV	Output value (MV)	A floating-point number Range: 0–100 Unit: %	
624 625	654 655	684 685		744 745	774 775	804 805	834 835	I_MV	Accumulated integral value	Floating-point format. The accumulated integral value is temporarily stored for reference. When the MV is out of the range 0%–100%, the accumulated integral value in I_MV is unchanged.	
626	656	686	716	746	776	806	836	CYCLE	Sampling time (T _S)	When this instruction is read, the PID algorithm is implemented according to the sampling time, and the MV is refreshed. If T _S is less than 1, it is read as 1. If T _S is larger than	1

			CI	₹#				Operand	Function	Docarintian	Dange
CH1	CH2	СНЗ	СН4	CH5	СН6	СН7	СН8	Operand	Function	Description	Range
										1,000, it is read as	
										1,000.	
										Unit: 100 ms	


6.2.8 Wiring

Precautions

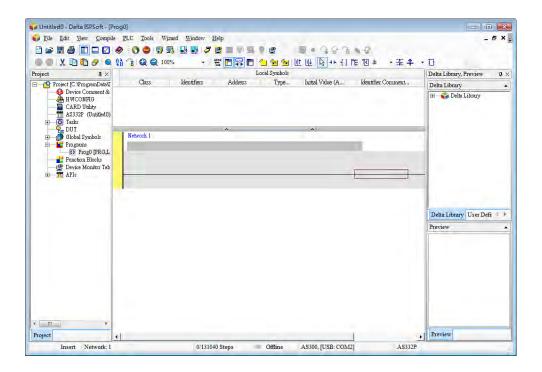
To ensure the analog-to-digital module functions well and reliably, the external wiring must prevent noise. Before you install the cables, follow the precautions below.

- (1) To prevent a surge and induction, the AC cable and the input signal cables that are connected to the ASTC-A Series must be separate cables.
- (2) Do not install the cable near a main circuit, a high-voltage cable, or a cable connected to a load which is not a PLC. In addition, the cable must not be bound to a main circuit, a high-voltage cable, or a cable connected to a load which is not a PLC.
- (3) Ground shielded cables and hermetically sealed cables separately.
- (4) Terminals with insulation sleeves cannot be arranged as a terminal block, so you should cover the terminals with insulation tubes.
- (5) Note1: do not wire empty terminals.
- (6) Note2: only use copper conducting wires with a temperature rating of 60/75°C and the length must be less than 50 m.
- (7) Note3: TC modules must run for 30 minutes before they start to take any temperature measurement.

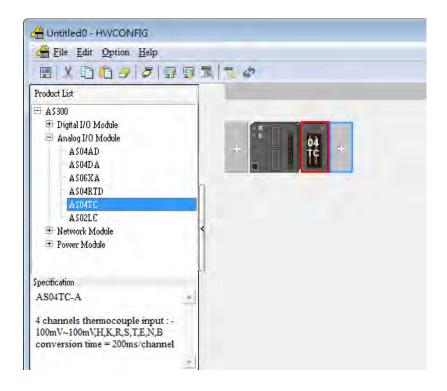
External wiring

*1. Use shielded twisted pair cables for Type J, type K, type R, type S, type T, type E, type N and type B thermocouples, and keep them separate from power cables and other cables which generate noise.

6.2.9 LED Indicators

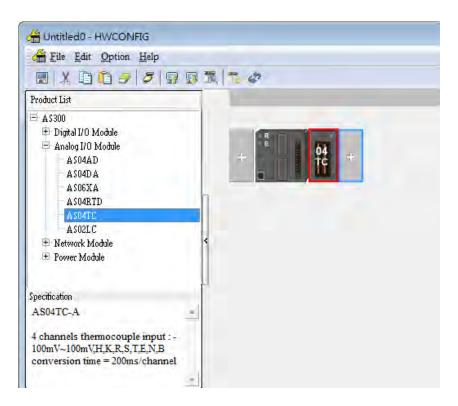

Number	Name	Description				
		Operating status of the module				
1	RUN LED Indicator	ON: the module is running.				
		OFF: the module is not running.				
		Error status of the module				
2	ERROR LED	ON: a serious error exists in the module.				
2	Indicator	OFF: the module is operating normally.				
		Blink: a minor error exists in the module.				
	Digital to Analog	Digital-to-analog conversion status				
3	Conversion	Blinking: conversion is in process.				
	Indicator	OFF: conversion has stopped.				

6.3 HWCONFIG in ISPSoft

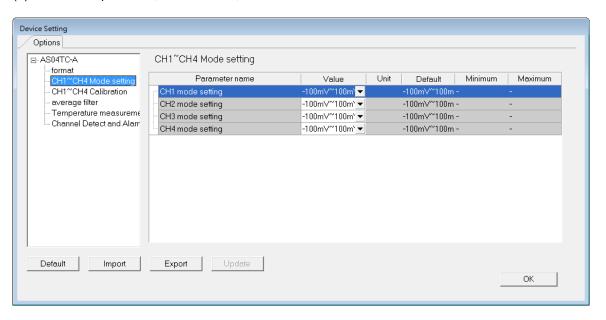

6.3.1 Initial Setting

The following uses AS04TC-A as an example to demonstrate.

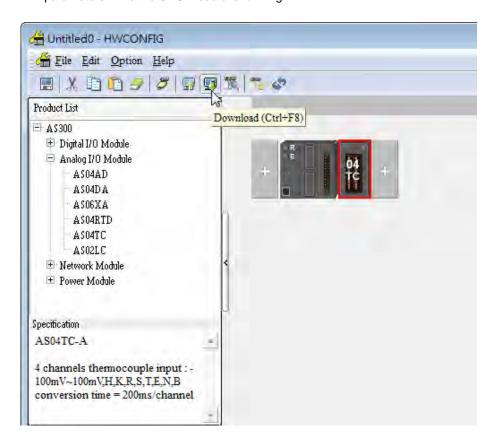
(1) Start ISPSoft and double-click HWCONFIG.


(2) Select a module and drag it to the working area.

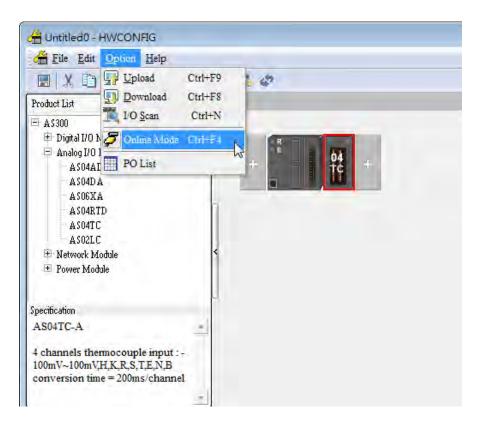
6


6

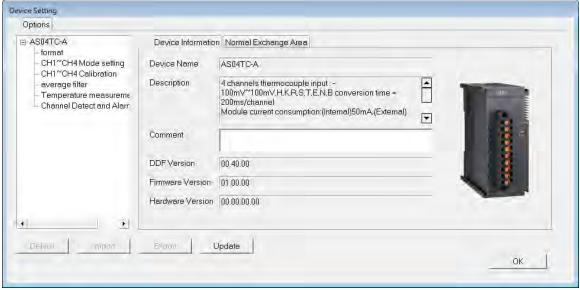
(3) Double-click the module in the working area to open the Device Setting page.



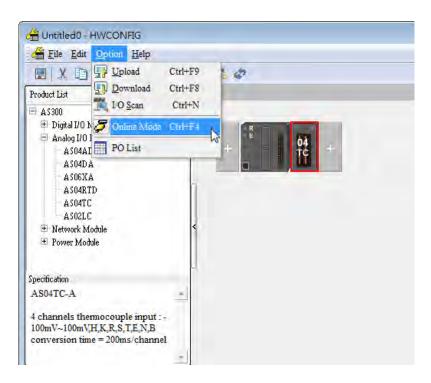
(4) Choose the parameter, set the values, and click **OK**.

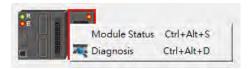


(5) Click **Download** on the toolbar to download the parameters. Note that you cannot download the parameters while the CPU module is running.

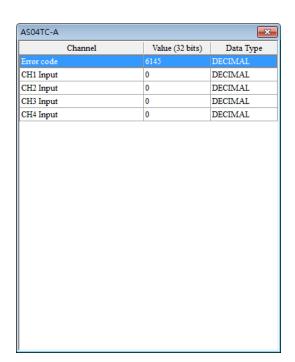

6.3.2 Checking the Version of a Module

(1) On the Option menu, click Online Mode.


(2) Double-click the module to open the Device Setting page. The versions of both the firmware and the hardware are displayed.

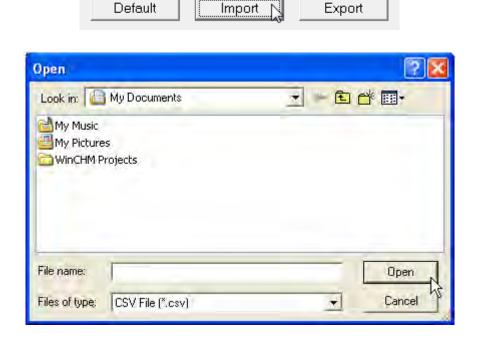


6.3.3 Online Mode


(1) On the Option menu, click Online Mode.

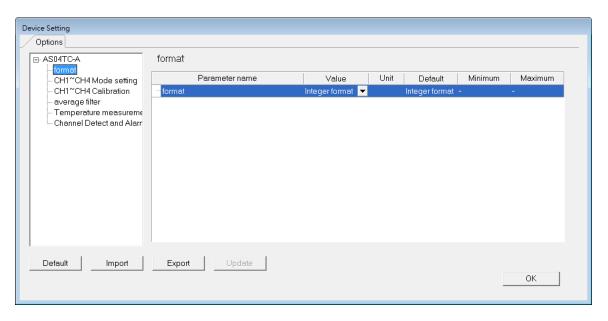
(2) Right-click the module and click Module Status.

(3) View the module status.

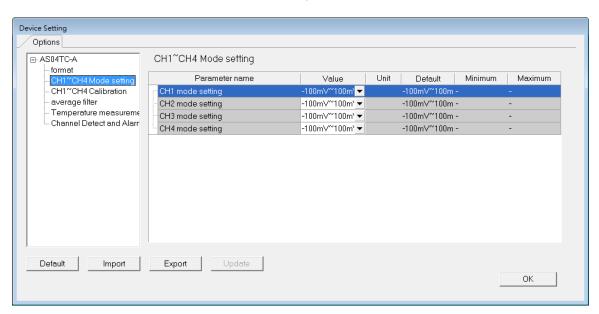

6

6.3.4 Importing/Exporting a Parameter File

(1) Click **Export** in the Device Setting dialog box to save the current parameters as a CSV file (.csv).

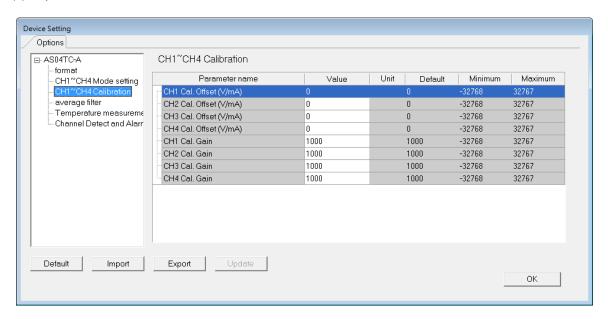


(2) Click Import in the Device Setting dialog box, and select a CSV file to import saved parameters.

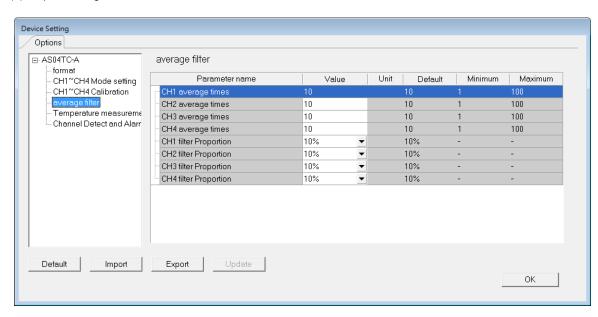


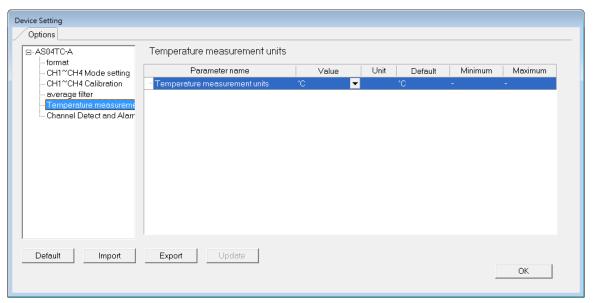
6.3.5 Parameters

(1) The input modes of the channels

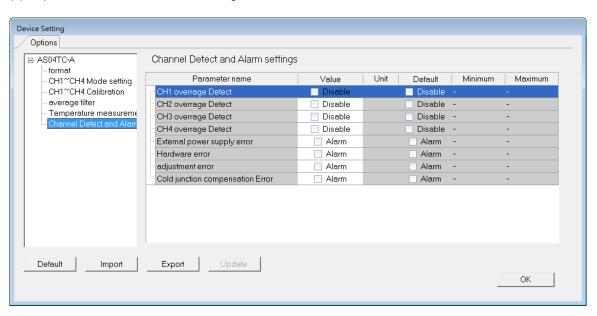


(2) Input CH1-CH4 (channel 1-channel 4) mode settings




6

(3) Input CH1-CH4 calibration



(4) Input average filter

(6) Input channel detect and alarm settings

6.4 Troubleshooting

6.4.1 Error Codes

Error Code	Description	A↔ D LED	ERROR LED
16#1605	Hardware failure	OFF	ON
16#1607	The external voltage is abnormal.	OFF	ON
16#1608	The factory calibration is abnormal.	OFF	ON
16#1801	The external voltage is abnormal.	OFF	Blinking
16#1802	Hardware failure	OFF	Blinking
16#1804	The factory calibration is abnormal.	OFF	Blinking
16#1808	The signal received by channel 1 exceeds the range of inputs that the hardware can receive.		
16#1809	The signal received by channel 2 exceeds the range of inputs that the hardware can receive.		
16#180A	The signal received by channel 3 exceeds the range of inputs that the hardware can receive.		
16#180B	The signal received by channel 4 exceeds the range of inputs that the hardware can receive.	Run: blinking	Blinking
16#180C	The signal received by channel 5 exceeds the range of inputs that the hardware can receive.	Stop: OFF	Billikilig
16#180D	The signal received by channel 6 exceeds the range of inputs that the hardware can receive.		
16#180E	The signal received by channel 7 exceeds the range of inputs that the hardware can receive.		
16#180F	The signal received by channel 8 exceeds the range of inputs that the hardware can receive.		

6.4.2 Troubleshooting Procedure

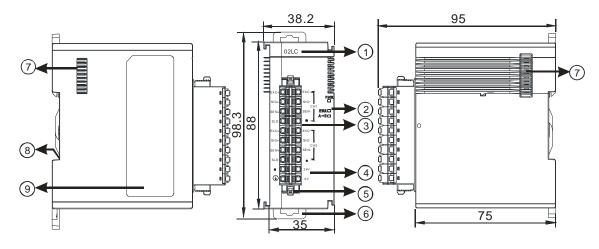
Description	Procedure
The external voltage is abnormal.	Ensure the external 24 V power supply to the module is functioning normally.
Hardware failure	Return the module to the factory for repair.
Internal error The factory calibration is abnormal.	Contact the factory.
The signal received by channel 1 exceeds the range of inputs that the hardware can receive.	Check the signal received by channel 1.
The signal received by channel 2 exceeds the range of inputs that the hardware can receive.	Check the signal received by channel 2.
The signal received by channel 3 exceeds the range of inputs that the hardware can receive.	Check the signal received by channel 3.
The signal received by channel 4 exceeds the range of inputs that the hardware can receive.	Check the signal received by channel 4.
The signal received by channel 5 exceeds the range of inputs that the hardware can receive.	Check the signal received by channel 5.
The signal received by channel 6 exceeds the range of inputs that the hardware can receive.	Check the signal received by channel 6.
The signal received by channel 7 exceeds the range of inputs that the hardware can receive.	Check the signal received by channel 7.
The signal received by channel 8 exceeds the range of inputs that the hardware can receive.	Check the signal received by channel 8.

Chapter 7 Load Cell Module ASO2LC

Table of Contents

7.1 O	verview	7-2
7.2 Si	pecifications	7-2
7.2.1	Specifications	
7.2.2	Profile	
7.2.3	Arrangement of Terminals	
7.2.4	Control Registers	
7.2.5	Functions	
7.2.6	Wiring	7-17
7.3 M	aking Adjustments	7-19
7.3.1	Steps to adjust points	
7.3.2	Adjustment settings / LC Wizard	
7.3.3	Adjustment settings / Instructional calibration	7-24
7.3.4	LED Indicators	
7.4 H	WCONFIG in ISPSoft	7-27
7.4.1	Initial Setting	
7.4.2	Checking the Version of a Module	
7.4.3	Online Mode	
7.4.4	Importing/Exporting a Parameter File	7-32
7.4.5	Parameters	
7.5 Tr	roubleshooting	7-36
7.5.1	•	
7.5.2	Troubleshooting Procedure	

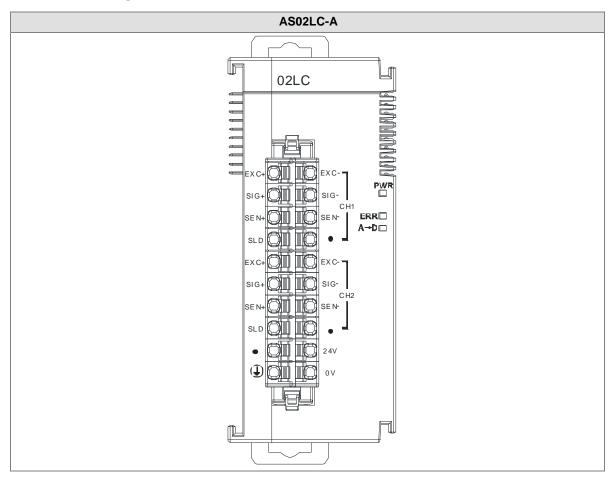
7.1 Overview


This chapter describes the specifications for load cell modules, their operation, and their programming. You can use the AS02LC load cell module with four-wire or six-wire load cells with various eigenvalues, so you can adjust its response time according to your requirements. In addition, the AS02LC-A can read and write data via the AS Series PLC units using the FROM/TO instructions. To ensure that the product is correctly installed and operated, read the manual carefully before use. This manual provides functional specifications, and it also introduces installation, basic operation, and settings. Refer to load cell related literature for more details on the principles of operating load cells.

7.2 Specifications

7.2.1 Specifications

Load Cell Module	Voltage Output
Rated Supply Voltage/Power Consumption	24 VDC (-15% to +20%)/5 W
Minimum/Maximum Voltage	18–31.2 VDC
Maximum Current Consumption	150 mA
Input Signal Range	±40 mVDC
Sensibility	+5 VDC +/-10%
Highest Precision	0.04%
Communication Interface	RS-232, RS-485
Applicable Sensor Type	4-wire or 6-wire load cell
Expanding a Temperature Coefficient	≤ ±50 ppm/K v. E
Reducing a Temperature Coefficient to Zero	≤ ±0.4 µV/K
Linearity Error	≤0.02%
Response Time	2.5, 10, 16, 20, 50, 60, 100, 200, and 400 ms
Eigenvalue Applicable to a Load Cell	0-1, 0-2, 0-4, 0-6, 0-20, 0-40 and 0-80 mV/V
Maximum Distance for Connecting a Load Cell	100 meters
Maximum Output Current	5 VDC x 160 mA
Allowable Load	40–4010 Ω
Common-mode Rejection Ratio (CMRR @50/60 Hz)	≥100 dB
Dynamic Filter	K1–K5
Average Weights	K1–K100
	Between a digital circuit and the ground: 500 VAC
Isolation	Between an analog circuit and the ground: 500 VAC
	Between an analog circuit and a digital circuit: 500 VAC


7.2.2 Profile

Unit: mm

Number	Name	Description
1	Model Name	Model name of the module
	RUN LED Indicator	Operating status of the module ON: the module is running. OFF: the module is not running.
2	ERROR LED Indicator	Error status of the module ON: a serious error exists in the module. OFF: the module is operating normally. Blink: a minor error exists in the module.
	Digital-to-Analog Conversion Indicator	Digital-to-analog conversion status Blinking: conversion is in process. OFF: conversion has stopped.
3	Removable Terminal Block	The inputs are connected to transducers. The outputs are connected to loads to be driven.
4	Arrangement of the Input/Output Terminals	Arrangement of the terminals
5	Clip	For removing the terminal block
6	DIN Rail Clip Secures the module onto the DIN rail	
7	Module Connecting Set	Connects the modules
8	Ground Clip	

7.2.3 Arrangement of Terminals

7.2.4 Control Registers

CR#	Name	Description	Defaults
	Display of the nw/gw for channel 1	0: disabled	
0		1: net weight	1
		2: gross weight	
		0: 1 mV/V	
	Eigenvalue for channel 1	1: 2 mV/V	
		2: 4 mV/V	
1		3: 6 mV/V	1
		4: 20 mV/V	
		5: 40 mV/V	
		6: 80 mV/V	
2	Sampling cycle for channel	0: 1 mV/V	4
2	1	1: 2 mV/V	4

7

CR#	Name	Description	Defaults
		2: 4 mV/V	
		3: 6 mV/V	
		4: 20 mV/V	
		5: 40 mV/V	
		6: 80 mV/V	
		0: 2.5 ms	
		1: 10 ms	
		2: 16 ms	
		3: 20 ms	
3	Weight measured times in a	4: 50 ms	5
	stability range for channel 1	5: 60 ms	
		6: 100 ms	
		7: 200 ms	
		8: 400 ms	
4	0.13	Floating-point format	40
5	Stability range for channel 1	Range: K1–K10000	10
6		Floating-point format	
	Maximum weight for	Maximum measuring weight; when the weight	100,000
7	channel 1	measured exceeds the limit, an alarm is triggered.	100,000
		The value should be greater than 1.	
		0: no filter (default)	
8	Filter mode for channel 1	1: maximum filter mode	0
		2: average filter mode	
9	Maximum filter for channel 1	Range: 0–8; the bigger the number the stronger	1
	Waximum inter for original r	the filter	,
10	Average weight measured times for channel 1	Range: 1–100	10
11	Upper limit of the zero return	Floating-point format	
12	for channel 1 Determines the current weight as the zero point in		10
13		the upper/lower range; when the lower range is	
	Lower limit of the zero return	larger than the upper range, the lower range is	-10
14	for channel 1	read as the upper range and vice versa.	
15	Zero point tracking time for	Range: 1–500	10

CR#	Name	Description	Defaults	
	channel 1	Unit: 100 ms		
16	Zero point tracking range for	Floating-point format	0	
17	channel 1	Range: 0–10000; 0: disabled	0	
18	Calibration points for channel 1	Range: 2–20	2	
10. 50	Calibrated weight for	Floating-point format		
19–58	channel 1	Calibrated weight of the calibration points 1–20	-	
	5: 1 (1)	0: disabled		
59	Display of the nw/gw for channel 2	1: net weight	1	
	Chamer 2	2: gross weight		
		0 : 1 mV/V		
		1:2 mV/V		
		2 : 4 mV/V		
60	Eigenvalue for channel 2	3 : 6 mV/V	1	
		4 : 20 mV/V		
		5 : 40 mV/V		
		6 : 80 mV/V		
		0 : 2.5 ms		
		1 : 10 ms		
		2 : 16 ms		
		3 : 20 ms		
61	Sampling cycle for channel 2	4 : 50 ms	4	
	2	5 : 60 ms		
		6 : 100 ms		
		7 : 200 ms		
		8 : 400 ms		
62	Weight measured times in a stability range for channel 2	Range: K1-K500	5	
63	Stability range for shares!	Floating-point format	40	
64	Stability range for channel 2 Range: K1–K10000		10	
65	Maximum waisht for	Floating-point format		
66	Maximum weight for channel 2	Maximum measuring weight; when the weight	100,000	
66	GIAIIIGI Z	measured exceeds the limit, an alarm is triggered.		


CR#	Name	Description	Defaults
		The value should be greater than 1.	
		0: no filter (default)	
67	Filter mode for channel 2	1: maximum filter mode	0
		2: average filter mode	
68	Maximum filter for channel 2	Range: 0–8; the bigger the number the stronger the filter	1
69	Average weight measured times for channel 2	Range: 1–100	10
70	Upper limit of the zero return	Floating-point format	10
71	for channel 2	Determines the current weight as the zero point in	10
72	Lower limit of the zero return	the upper/lower range; when the lower range is	
73	for channel 2	larger than the upper range, the lower range is	-10
		read as the upper range and vice versa.	
74	Zero point tracking time for	Range: 1–500	10
	channel 2	Unit: 100 ms	
75 	Zero point tracking range for	Floating-point format	0
76	channel 2	Range: 0–10000; 0: disabled	
77	Calibration points for channel 2	Range: 2–20	2
78–117	Calibrated weight for	Floating-point format	_
70-117	channel 2	Calibrated weight of the calibration points 1–20	
118	Decimal place for channel 1	Range: 0–4	1
119	Decimal place for channel 2	Range: 0–4	1
		0: warning	
		1: alarm	
120	Alarm	Bit1: error in the power supply	0
		Bit2: error in the module hardware	
		Bit3: error in the driver board	
200	State register	Refer to the explanation below.	-
201	Instruction set	Refer to the explanation below.	0
210	The maximum peak value	Floating-point format	-
211	for channel 1	Maximum peak value for channel 1	-
212	The maximum peak value	Floating-point format	-

CR#	Name	Description	Defaults
213	for channel 2	Maximum peak value for channel 2	-
214	The minimum peak value for	Floating-point format	-
215	channel 1	Minimum peak value for channel 1	-
216	The minimum peak value for	Floating-point format	-
217	channel 2	Minimum peak value for channel 2	-
222	The time to record for channel 1	Unit: 1 ms	50
223	The time to record for channel 2	Range: 1–100 (1 ms–1 s) Time to record the digital value for the channels	50
240	The number of records for channel 1	Decree 0 500 display the correct records	-
241	The number of records for channel 2	Range: 0–500; display the current records	-
604	Tare measured by channel		-
605	1	Display the tare measured by channel 1	-
606	Tare measured by channel	Display the term property of head of the	-
607	2	Display the tare measured by channel 2	-
700-	Theoretical calibration for	Floating-point format	0
739	channel 1	Output voltage unit: mV	0
740-	Theoretical calibration for	Floating-point format	0
779	channel 2	Output voltage unit: mV	0
4000	Records for channel 1	Floating-point format	
-4999	Trecords for challier i	500 records for channel 1	_
5000	Records for channel 2	Floating-point format	
-5999	Necords for cridiffier 2	500 records for channel 2	

Normal Exchange Area

Explanation

You can view the error code, the channel value, and the state code, as well as the data registers that correspond to their instructions on the Normal Exchange Area tab of the Device Setting dialog box in the HWCONFIG utility in ISPSoft.

CR#200: Codes for the state register

Explanation

Bit	Code	Definition	Bit	Code	Definition
b0	16#0001	Error exists in the power supply.	b1	16#0002	Error exists in the module hardware.
b2	16#0004	Error exists in the driver board.	b3	16#0008	Calibration disabled
b4	16#0010	Reserved	b5	16#0020	Reserved
b6	16#0040	The weight measured by CH1 exceeds the maximum weight that can be measured, or the voltage of SEN is incorrect.	b7	16#0080	The weight measured by CH2 exceeds the maximum weight that can be measured, or the voltage of SEN is incorrect.
b8	16#0100	The weight measured by CH1 exceeds the maximum weight	b9	16#0200	The weight measured by CH2 exceeds the

Bit	Code	Definition	Bit	Code	Definition
		that can be measured.			maximum weight that can be measured.
b10	16#0400	CH1 has been adjusted incorrectly.	b11	16#0800	CH2 has been adjusted incorrectly.
b12	16#1000	CH1 is not measuring any weight.	b13	16#2000	CH2 is not measuring any weight.
b14	16#4000	The weight measured by CH1 is in the stability range specified.	b15	16#8000	The weight measured by CH2 is in the stability range specified.

Note: The state is determined by the corresponding bit and it is possible to have more than 2 states at the same time.

CR#201: Instruction set

Explanation

Input value	Description	Input value	Description
0	No action	16#0101	Start a new recording of the peak value for channel 1.
1–20	Instructions for calibrating calibration points 1–20 in channel 1	16#0102	Start a new recording of the peak value for channel 2.
21–40	Instructions for calibrating calibration points 1–20 in channel 2		Start a new recording of the peak value for channels 1–2.
98	Activate the weight calibration.	16#0201	Start a new recording for channel 1.
99	Deactivate the weight calibration.	16#0202	Start a new recording for channel 2.
100	Subtract the tare measured by CH1.	16#020F	Start a new recording for channels 1–2.
101	Do not subtract the tare measured by CH1.	16#0211	Stop recording for channel 1.
102	Restore the weight measured by CH1 to 0.	16#0212	Stop recording for channel 2.
103	Subtract the tare measured by CH2.	16#021F	Stop recording for channels 1–2.
104	Do not subtract the tare measured by	16#0301	Start a theoretical calibration for channel 1.

Input value	Description	Input value	Description
	CH2.		
105	Restore the weight measured by CH2 to 0.	16#0302	Start a theoretical calibration for channel 2.
16#030F	Start a theoretical calibration for channels 1–2.	16#0502	Restore default settings

7.2.5 Functions

Item	Function	Description	
1	Measuring net weight	Various measuring modes to choose from	
2	Stability check	When an object is put on a load cell, you can check whether the present weight of the object is in a specified stability range.	
3	Determining zero point	If an object is removed from the load cell, no weight is measured.	
4	Filter out weights	Filter out the maximum or minimum weight measured or use an average weight for a more accurate value.	
5	Multi-point adjustment	There are as many as 20 points for adjustment	
6	Theoretical calibration	Calibration based on the output value of the sensor instead of the real weight calibration	
7	Zero point tracking	Zero point tracking	
8	Limit detections for channels	Save the maximum and minimum values for channels.	
9	Records for channels	Save the analog curves for channels.	

1. Measuring net weight

You can choose to measure either the net weight or the gross weight of an object. Net weight is the actual weight of a product without its package. The weight of a package is the tare. Gross weight is the total weight: net weight plus tare.

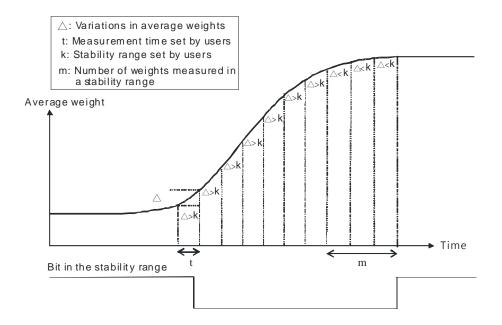
- Tare: the weight of a package
- Net weight: the weight of a product, that is, the actual weight of a product without its package
- Gross weight: the total weight, that is, the net weight of a product plus the tare weight of its package
- Gross weight=Net weight+Tare

Example: a product weighs 10 kg, and the carton in which the product is packed weighs 0.2 kg. The gross weight is 10.2 kg.

Net weight=10 kg

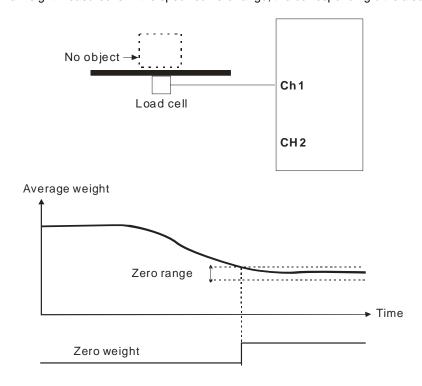
Tare=0.2 kg

Gross weight=10.2 kg


2. Checking stability

When an object is placed on a load cell, you can check whether the present weight of the object is in a specified stability range.

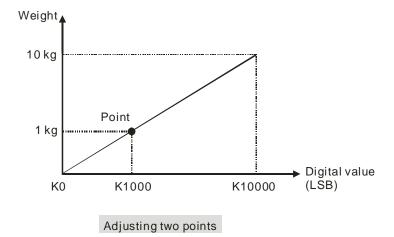
- If the weight measured is in the specified stability range, the corresponding bit is set to 1.
- If the weight measured exceeds the specified stability range, the corresponding bit is set to 0 until the number of objects weighed in the stability range reaches the setting.


Example: the measurement time set is 10 ms, the number of weights measured in a stability range is 10, and the stability range is 1000 g. If a variation exceeds 1000 g, the corresponding bit is set to 0. If the variations within 100 ms (10×10 ms) are within 1000 g, the corresponding bit is set to 1. You should determine whether the present weight measured is in the stability range before you perform control actions.

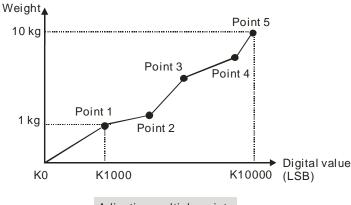
7

3. Determining zero point

If an object is removed from the load cell, the corresponding bit is set to 1, and you can perform the next control action. If a weight measured is in the specified zero range, the corresponding bit is also set to 1.


4. Filtering out weights

There are two ways to filter out weights.

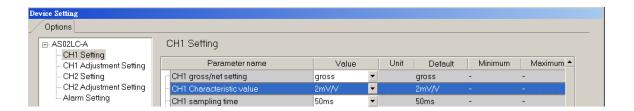

- Filtering out the maximum/minimum weight measured: If there is a maximum weight or a minimum weight, you can filter out the maximum weight or the minimum weight. The larger the value, the more weights are filtered out. Range: K0–K8
- Averaging weights: The values recorded are averaged so that a steady value is obtained. There may be
 peak values due to unavoidable external factors, and the average value obtained may change accordingly.
 A maximum of 100 values can be averaged.

5. Making multi-point adjustments

Make adjustments to get the weight measured by a cell to correspond to the digital value displayed by the load cell module. Generally, two points are adjusted. After a system is set up, put no load on the scale. The weight measured is 0 grams when there is no load. Then place an object of a given weight on the scale, and set a digital value corresponding to the weight. At that point, two points have been adjusted. For example, if you have a load cell sensor which can measure a maximum weight of 10 kg, and if 1 kg corresponds to K1000, the curve is like the one shown below.

In addition to this two-point adjustment, the load cell also supports adjustments of up to 20 points. A characteristic curve is shown below.

Adjusting multiple points


7

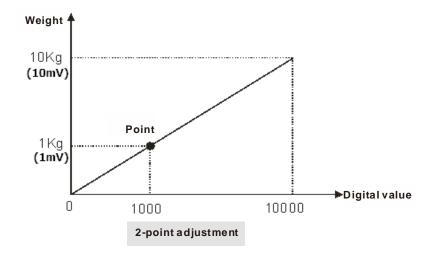
6. Determining theoretical calibration

Theoretical calibration is determined according to the sensor specification in order to input the voltage values corresponding to various weights. The registers for storing the voltage values are CR#700–739 for channel 1 and CR#740–779 for channel 2. After entering the voltage values into the registers, you can use the instruction set 16#301–302 to execute the calibration.

Example: the sensor specification is 10 kg and its eigenvalue is 2 mV/V. When the sensor is loaded with a 10 kg weight, the output is 10 mV. The theoretical calibration steps are:

Step 1: set the eigenvalue.

Step 2: set the 2-point adjustment; when the sensor is loaded with a 1 kg weight, set the value to 1000.

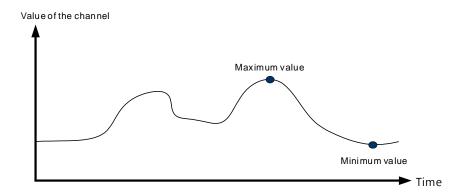

Step 3: set the voltage calibration for the zero point to 0 (0 mV) in the CR#700/701 registers, and to 1.0 (1 mV) in the CR702/703 registers.

Step 4: enable the calibration function and enter 98 into the instruction set CR#201.

Step 5: enter 16#0301 into the instruction set CR#201 to execute a theoretical calibration for channels 1.

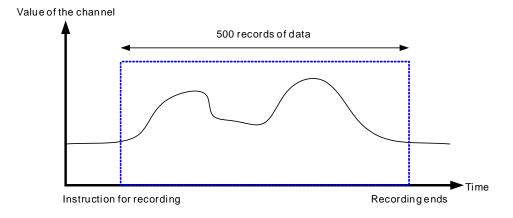
Step 6: do not put any load on the sensor and enter 16#102 into the instruction set CR#201 to reset the value to 0 for channel 1.

Step 7: disable the calibration function to prevent inappropriate changes. To complete the theoretical calibration, enter 99 into the instruction set CR#201. Put a 1 kg weight on the sensor and the load cell should show 1000.

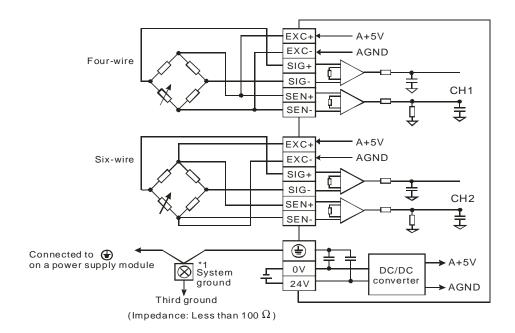


7. Zero point tracking

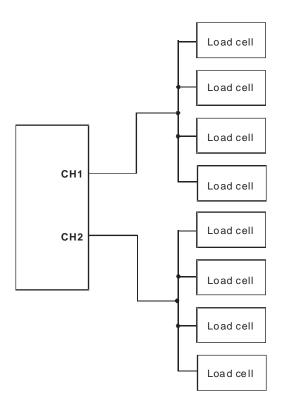
Zero point tracking refers to resetting the current value to 0. You can reset the value to 0 within a certain duration or at a certain weight. This is especially useful when the sensor is no longer as accurate as it was before.


8. Limit detections for channels

Save the maximum and minimum values for channels so you can determine the peak to peak values.


9. Recording channels

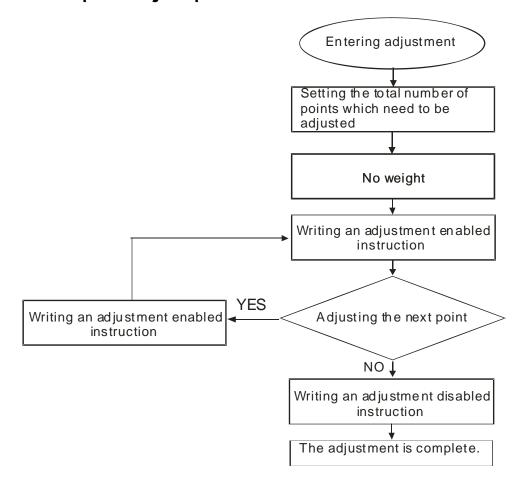
Record the input values of the cyclic sampling for each channel. The system saves up to 500 data points and the recording time is 10 ms.



7.2.6 Wiring

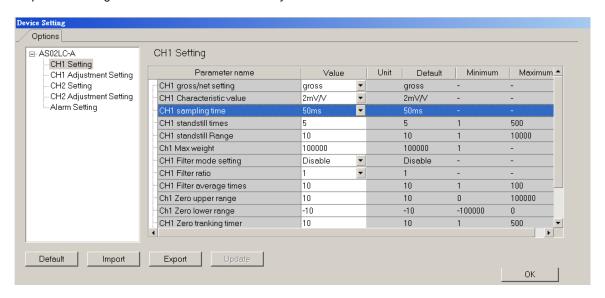
External wiring

Multiple load cells connected in parallel are connected to a single load cell module.

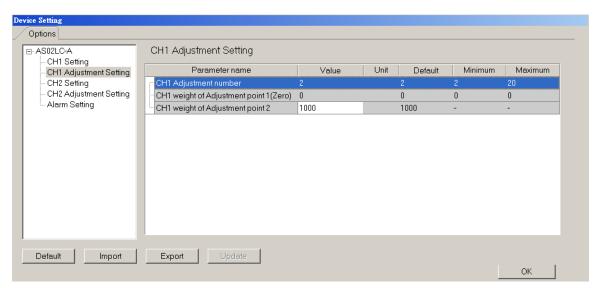

Note 1: Please connect on the power supply module and on the load cell module to a system ground, and then ground the system ground or connect the system ground to a distribution box.

Note 2: If multiple load cells are connected in parallel, the total impedance should be greater than 40 Ω .

7.3 Making Adjustments


Make adjustments to get the weight measured by a cell to correspond to the digital value displayed by the load cell module. You can make adjustments by following the instructions below or by setting up the theoretical calibration (refer to section 7.2.5 for more details).

7.3.1 Steps to adjust points



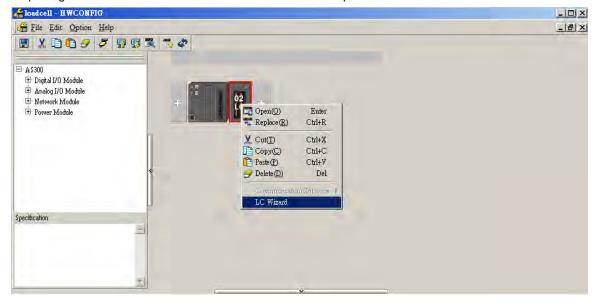
7.3.2 Adjustment settings / LC Wizard

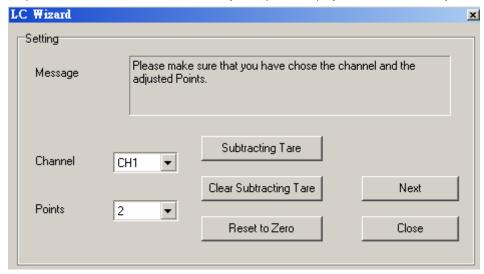
Step 1: set the eigenvalue in the HWCONFIG utility in ISPSoft.

Step 2: set the number of adjustments and their corresponding values. The example below shows a 2-point adjustment in which point 1 = 0 and point 2 = 1000, corresponding to 1 kg.

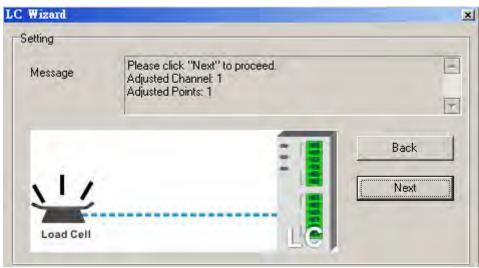
7

D28000 ~ D28006 D28007 ~ D28019

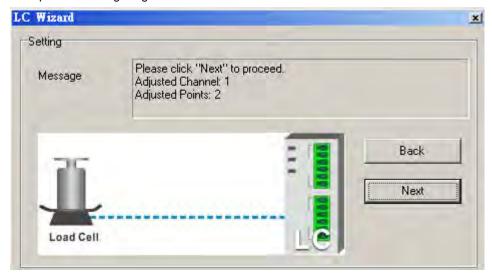

Step 3: after the configuration is complete, download the parameters to the module.


Step 4: right click the module and then click on LC Wizard to open the LC Wizard.

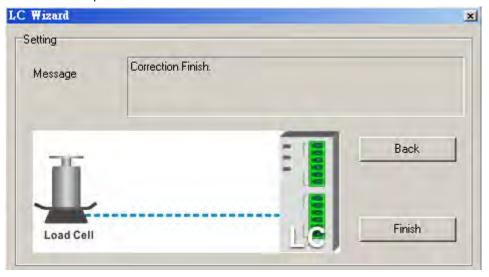
01.00.00


Function Card

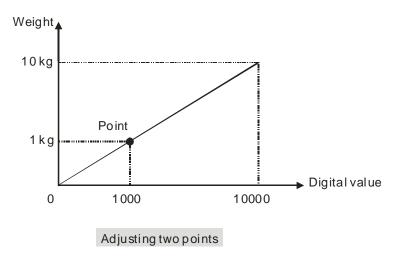
Module Informatic Analog I/O Module ASO2LC-A



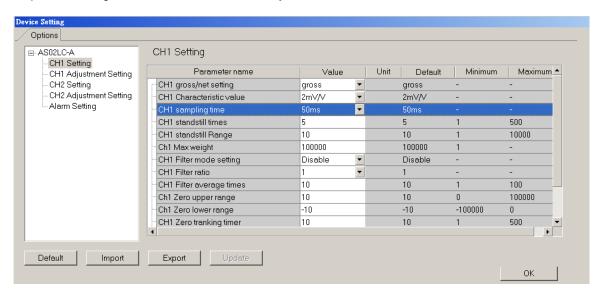
Step 6: put no load on the load cell (adjustment point 1) and click **Next** to proceed.



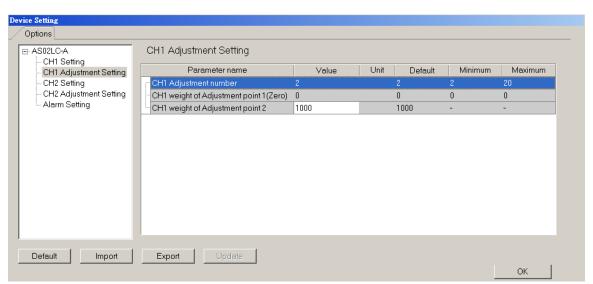
7


Step 7: Put a load on the load cell (adjustment point 2). For multi-point adjustment, repeat this step. This example uses a 1 kg weight.

Step 8: the calibration is complete.

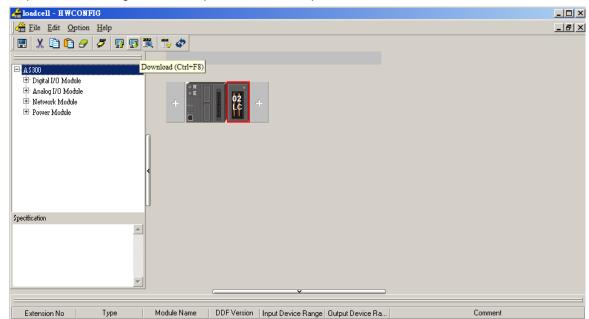


A characteristic curve is shown below.



7.3.3 Adjustment settings / Instructional calibration

Step 1: set the eigenvalue in the HWCONFIG utility in ISPSoft.



Step 2: set the number of adjustments and their corresponding values. The example below shows a 2-point adjustment where point 1 = 0 and point 2 = 1000, corresponding to 1 kg.

_/

Step 3: after the configuration is complete, download the parameters to the module.

Step 4: verify that the corresponding address the instruction is D28007 in the Normal Exchange Area.

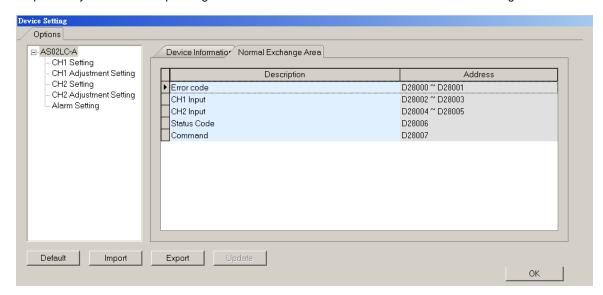
X0.0 ~ X0.15

Y0.0 ~ Y0.15

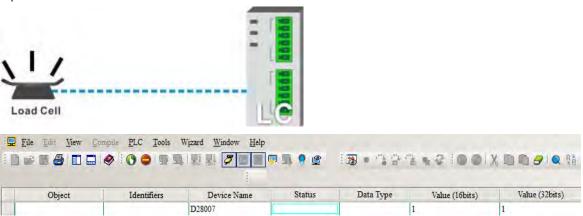
D28000 ~ D28006 D28007 ~ D28019

Power Module CPU Module

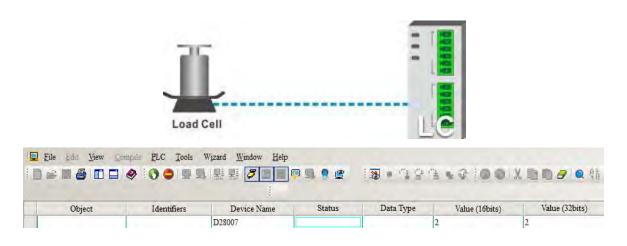
Function Card Function Card

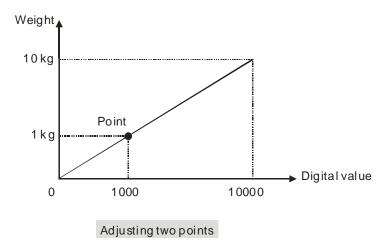

CPU Module

Module Informatic Analog I/O Module ASO2LC-A


AS332T

01.00.00

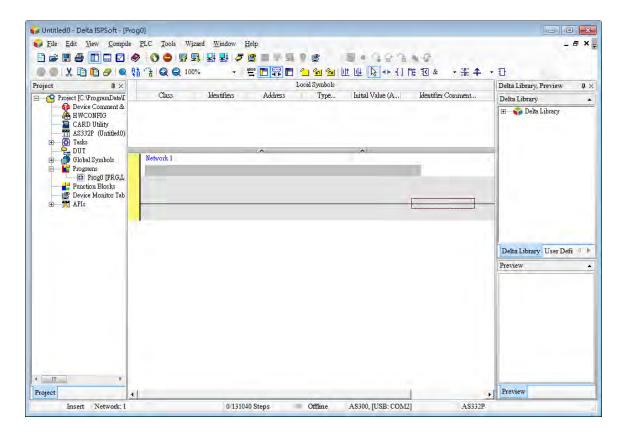

01.00.00


Step 6: put no load on the load cell (adjustment point 1) and enter 1 into D28007. 1 represents channel 1 and 2 represents channel 2.

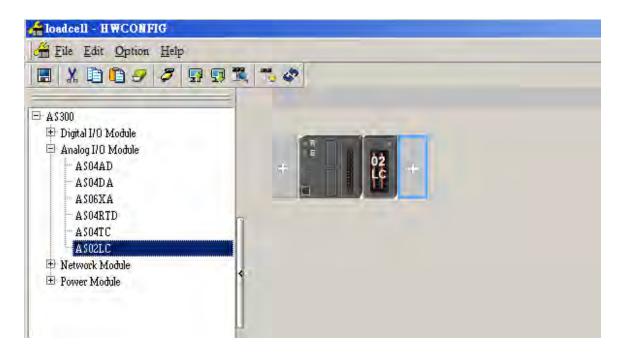
Step 7: put a load on the load cell (adjustment point 2). For multi-point adjustment, repeat this step. This example uses a 1 kg weight.

Step 8: to complete the adjustment, enter the instruction for deactivating the weight calibration 99 into D28007. A characteristic curve is shown below.

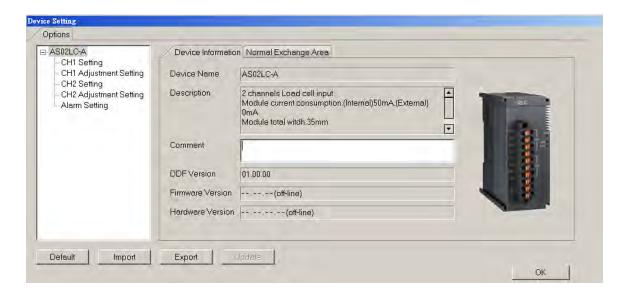
I


7.3.4 LED Indicators

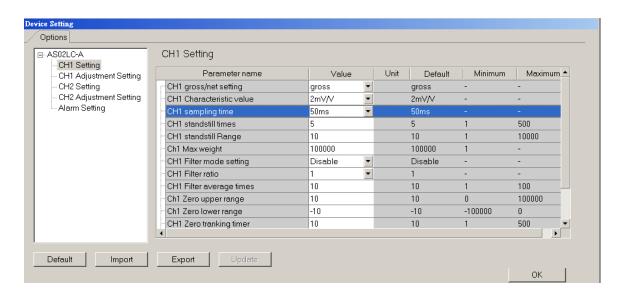
Number	Name	Description	
		Operating status of the module	
1	RUN LED Indicator	ON: the module is running.	
		OFF: the module is not running.	
		Error status of the module	
2	ERROR LED	ON: a serious error exists in the module.	
2	Indicator	OFF: the module is operating normally.	
		Blink: a minor error exists in the module.	
	Digital to Analog	Digital-to-analog conversion status	
3	Conversion	Blinking: conversion is in process.	
	Indicator	OFF: conversion has stopped.	


7.4 HWCONFIG in ISPSoft

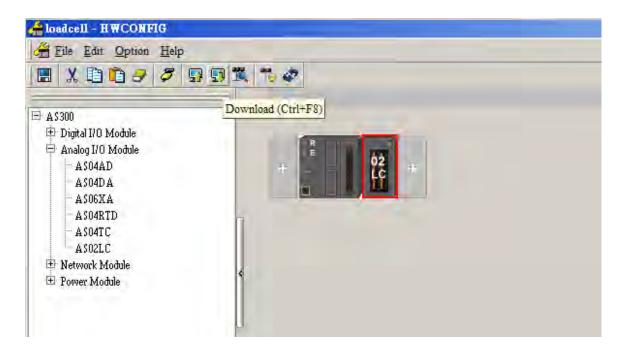
7.4.1 Initial Setting


(1) Start ISPSoft and double-click HWCONFIG.

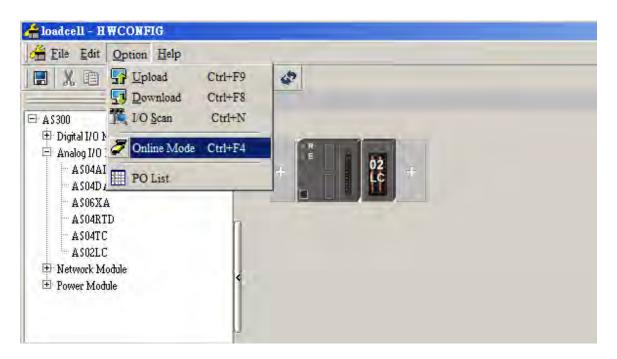
(2) Select a module and drag it to the working area.



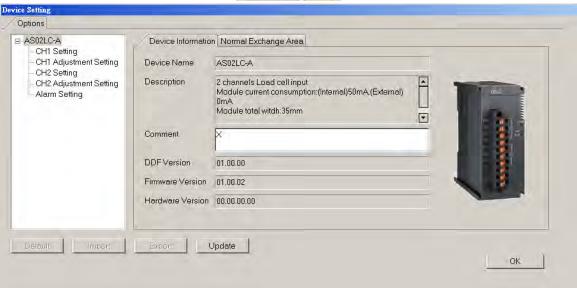
(3) Double-click the module in the working area to open the Device Setting page.



(4) Choose the parameter, set the values, and click **OK**.

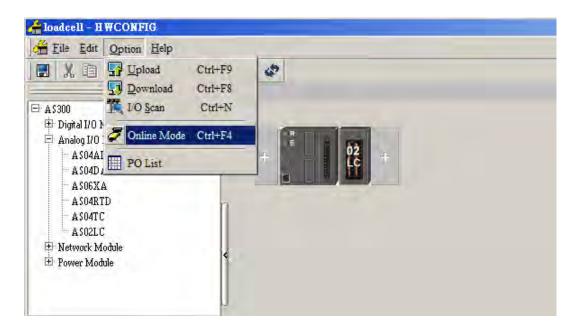


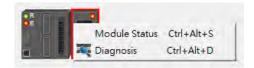
(5) Click **Download** on the toolbar to download the parameters. Note that you cannot download the parameters while the CPU module is running.)


7.4.2 Checking the Version of a Module

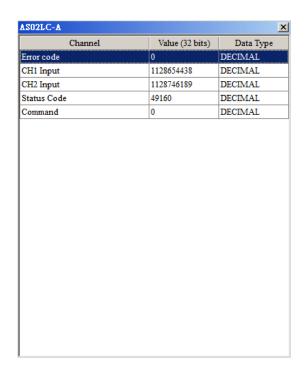
(1) On the Option menu, click Online Mode.

(2) Double-click the module to open the Device Setting page. The versions of both the firmware and the hardware are displayed.




7

7.4.3 Online Mode


(1) On the Option menu, click Online Mode.

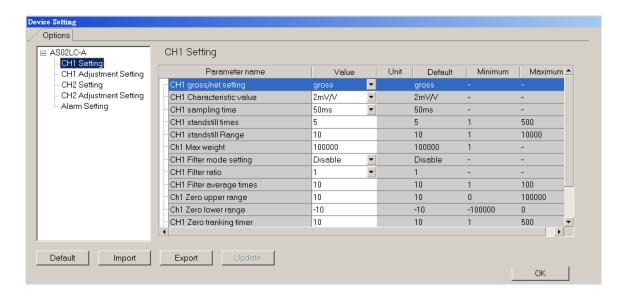
(2) Right-click the module and click **Module Status**.

(3) View the module status.

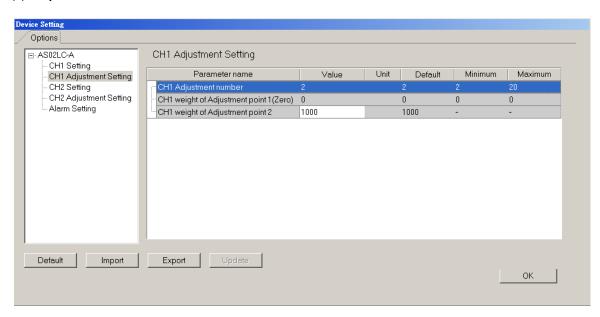


7.4.4 Importing/Exporting a Parameter File

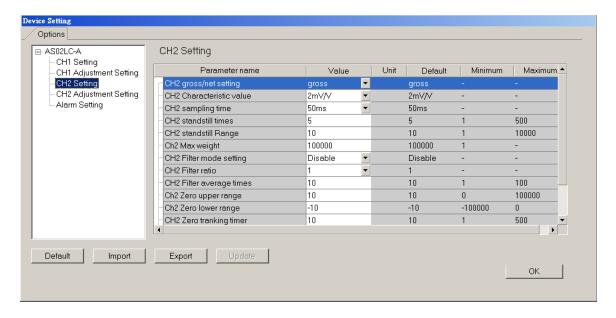
(1) Click **Export** in the Device Settings dialog box to save the current parameters as a CSV file (.csv).

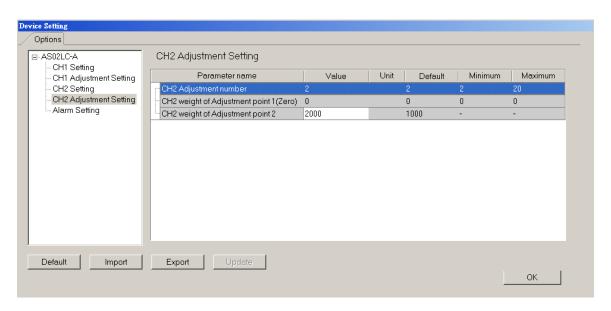


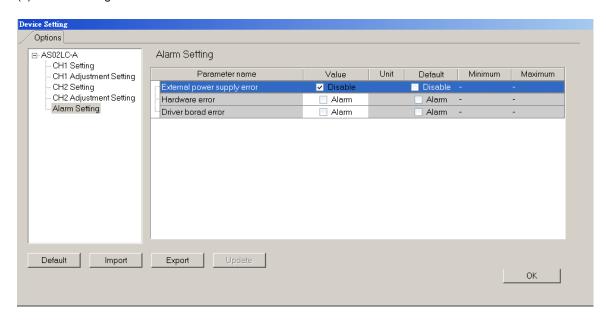
(2) Click Import in the Device Settings dialog box and select a CSV file to import saved parameters.



7.4.5 Parameters


(1) Settings for channel 1


(2) Adjustment for channel 1


(3) Settings for channel 2

(4) Adjustment for channel 2

(5) Alarm settings

7.5 Troubleshooting

7.5.1 Error Codes

Error	Description	A↔ D LED	ERROR LED	
Code		indicator	indicator	
16#1605	Hardware failure	OFF	ON	
16#1607	The external voltage is abnormal.	OFF	ON	
16#1801	The external voltage is abnormal.	OFF	Blinking	
16#1802	Hardware failure	OFF	Blinking	
16#1807	The driver board is abnormal.	OFF	Blinking	
16#1808	The weight measured by CH1 exceeds the maximum weight that			
10#1000	can be measured, or the voltage of SEN is incorrect.			
16#1809	The weight measured by CH1 exceeds the maximum weight that			
	can be measured.			
16#180A	CH1 is adjusted incorrectly.	Run: blinking	Blinking	
16#180B	The weight measured by CH2 exceeds the maximum weight that		Billikilig	
10//1002	can be measured, or the voltage of SEN is incorrect.			
16#180C	The weight measured by CH2 exceeds the maximum weight that			
	can be measured.			
16#180D	16#180D CH2 is adjusted incorrectly.			

7.5.2 Troubleshooting Procedure

Description	Procedure
The external voltage is abnormal.	Ensure the power supply is functioning correctly.
Hardware failure	Return the module to the factory for repair.
The driver board is abnormal.	Return the module to the factory for repair.
The weight measured by CH1 exceeds the maximum weight that can be measured, or the voltage of SEN is incorrect.	Check the signal received by channel 1 and its wiring.
The weight measured by CH1 exceeds the maximum weight that can be measured.	Check the parameters of the related weight values for channel 1.
CH1 is adjusted incorrectly.	Check the adjusted weight value and the adjustment steps for channel 1.

Description	Procedure	
The weight measured by CH2 exceeds the maximum weight that can be measured, or the voltage of SEN is incorrect.	Check the signal received by channel 2 and its wiring.	
The weight measured by CH2 exceeds the maximum weight that can be measured.	Check the parameters of the related weight values for channel 2.	
CH2 is adjusted incorrectly.	Check the adjusted weight value and the adjustment steps for channel 2.	

7

Memo

Chapter 8 Serial Communication Module AS00SCM

Table of Contents

8.1	Introduction	8-3
8.2	Specification, Function and Wiring	8-3
8.	.2.1 The functional specifications	8-3
8.	.2.2 Dimensions and Profile	8-4
8.	.2.3 Wiring	8-6
	8.2.3.1 AS00SCM-A Power Wiring	8-6
	8.2.3.2 AS00SCM-A Communication Interface	8-7
8.3	COM mode	8-7
8.	.3.1 Modbus	8-8
8.	.3.2 UD Link	8-8
	8.3.2.1 TX Packets and RX Packets	8-9
	8.3.2.2 Command	8-11
8.	.3.3 CANopen Mode	8-12
	8.3.3.1 Features	8-12
	8.3.3.2 Corresponding Input / Output Device Range	8-12
8.4	RTU Mode	8-14
8.	.4.1 CANopen Mode (AS-FCOPM)	8-14
8.	.4.2 EtherNet/IP Mode (AS-FEN02)	8-17
8.	.4.3 Remote Module Setting	8-20
8.5	Normal Exchange Area	8-22
8.6	Application	8-23
8.	.6.1 Modbus	8-23
	8.6.1.1 Modbus Slave—Connection to Delta Products	8-24
	8.6.1.2 Modbus Master—Connection to Delta Products	8-26
8.	.6.2 UD Link	8-33
8.	.6.3 Remote IO Application (AS-FCOPM)	8-48
8.	.6.4 Remote IO Application (AS-FEN02)	8-55
8.	.6.5 Data Mapping through Modbus TCP (AS-FEN02)	8-57
8.	.6.6 Data Mapping through EtherNet/IP (AS-FEN02)	8-59
8.	.6.7 Data Mapping through Modbus TCP (AS-FEN02)	8-61

В.	.7 Error Codes	. 8-63
	8.7.1 Troubleshooting for Module AS00SCM-A as a Communication Module	8-64
	8.7.1.1 ERROR LED Indicators are ON	8-64
	8.7.1.2 ERROR LED Indicators Blinking Every 0.5 Seconds	8-64
	8.7.2 Troubleshooting for Module AS00SCM-A as a Remote Module	8-65
	8.7.2.1 ERROR LED Indicators Are ON	8-65
	8.7.2.2 ERROR LED Indicators Blinking Every 0.5 Seconds	8-65
	8.7.2.3 ERROR LED Indicators Blinking Every 0.2 Seconds	8-66

8.1 Introduction

Thank you for using the AS00SCM-A, a serial communication module. To ensure that your AS00SCM-A is installed and operated correctly, read this manual carefully before using the module.

The AS00SCM-A is a serial communication module, supporting the communication cards AS-F232, AS-F422, and AS-F485, AS-FEN02 (Card 2) as well as AS-FCOPM (Card 2). It supports various protocols including Modbus, UD Link (user-defined format), CANopen (firmware V2.00 or later), Modbus TCP (firmware V2.02 or later) and EtherNet/IP with DLR function (firmware V2.0 or later). You can configure the AS00SCM-A by using ISPSoft. Download ISPSoft V3.0 or later from Delta's official website. If you use UD Link, configure it through SCMSoft, included in DCISoft. Download DCISoft V1.18 or later from Delta's official website. You can set up the EtherNet/IP via EIP Builder. Download EIP Builder V1.05 or later from Delta's official website.

	Protocols	COM (series COM ports)		RTU (Remote control)
	FIOLOCOIS	Card 1	Card 2	Card 2
AS-F232	MODDIIO	V	V	-
AS-F485	MODBUS UD Link	V	V	-
AS-F422	OD LIIK	V	V	-
	AS Remote Communication		V	(Firmware V2.00 or later)
AS-FCOPM	Delta Special Driver & AS Remote Mode	-	(Firmware V2.00 or later)	(i iiiiwaie v2.00 oi latei)
	CANopen DS301	-		(Firmware V2.02 or later)
AS-FEN02	EtherNet/IP MODBUS TCP	-	-	(Firmware V2.02 or later)

8.2 Specification, Function and Wiring

8.2.1 The functional specifications

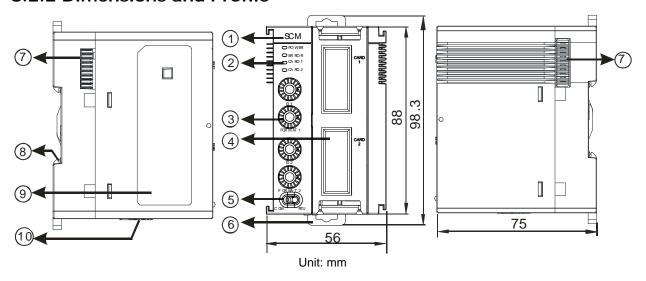
■ RS-485/RS-422 communication interface

Item	Specifications
Connector type European-style terminal block, spring-clip connector	
Transmission speed	300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 76800 115200 and 230400 bps
Communication format	Stop bit: 1 bit and 2 bits Parity bit: none, an odd parity bit, and an even parity bit Data bit: 7 bits and 8 bits
Communication protocol	Modbus ASCII/RTU UD Link

■ CANopen communication interface

Item	Specifications
Connector type	RJ45
Transmission speed	10k, 20k, 50k, 125k, 250k, 500k, and 1000k bps
Communication	AS remote mode (RTU mode)
protocol	CANopen (firmware V2.00 or later)

■ Ethernet communication interface


Item	Specifications
Connector type	RJ45

Transmission speed	10M, 100Mbps
Communication protocol	Modbus TCP, EtherNet/IP (firmware V2.02 or later)

■ Electrical specifications

Item	Specifications
Supply voltage	24 VDC
Electric energy consumption	0.6 W
Weight	Approximately 169 g

8.2.2 Dimensions and Profile

Number	Name	Description			
1	Model Name	Model name of the module			
	RUN LED Indicator (blue)	Operating status of the module ON: the module is running. OFF: the module has low voltage or no power.			
2	ERROR LED Indicator (red)	Error status of the module ON: there is a hardware error. OFF: the module is operating normally. Blink: 1. the configuration of the module is invalid, or there is a communication error (blinking every 1 second). 2. hardware/low voltage error (blinking every 0.2 seconds)			
	Function card 1 Indicator (orange)	Blink: data is being transmitted to function card 1. OFF: there is no data transmission to function card 1.			
	Function card 2 Indicator (orange)	Blink: data is being transmitted to function card 2. OFF: there is no data transmission to function card 2.			
3	Switch for the Node ID and Format	2 sets, one for function card 1 and the other for function card 2			
	Function Card 1 Slot	For AS-F232, AS-F422, AS-F485			
4	Function Card 2 Slot	For AS-F232, AS-F422, AS-F485, AS-FCOPM, and AS-FEN02 (in RTU mode only)			
5	Switch for the Work Mode	COM: communication mode			

Number	Name	Description				
		RTU: remote control mode				
6	DIN Rail Clip	Secures the module onto the DIN rail				
7	Module Connecting Set	Connects the modules				
8	Ground Clip					
9	Label	Nameplate				
10	RTU Power Input	Supplies power to the RTU module				

Switch for the node ID and format

When the ID switch setting is not 0, the switch setting range is 0x01–0x0F and the format cannot be configured by ISPSoft. If the ID switch setting is 0 and the format can be configured by ISPSoft. The node ID range varies according to different communication cards; users can follow the setup instructions shown on the ISPSoft.

	ID Setup									
ID1/ID2 ID Setup ID1/ID2 ID Setup										
0	Use ISPSoft	1-F	Use ISPSoft							

Switch for IP address

When the communication card is AS-FEN02, it only support RTU mode and the IP address is set through ID2 and FORMAT 2 switch.

- 1. When both switches ID2 and FORMAT 2 are set to 0, IP address is set through ISPSoft. Users can follow the setup instructions shown on the ISPSoft.
- 2. When either ID2 or FORMAT 2 is 0, IP address is set by switches ID2 and FORMAT 2. Hexadecimal format is used and ID2 corresponds to $x16^1$ and FORMAT 2 to $x16^0$. The possible IP address is 192.168.1.x, $x=1\sim FF(1\sim 255)$.

Switch for the work mode

When the setting is 0, configure the work mode using ISPSoft.

COM mode: if you need to configure a different communication format, set the switch to 0 and configure the work mode using ISPSoft.

RTU mode: when using the module in RTU mode, you can set the communication baud rate only by using the switch and not through ISPSoft.

	COM Mode COM. RTU											
FORMAT 1/ FORMAT 2	Baud Rate (bps)	Data (bits)	Parity	Stop (bits)	ASCII/ RTU	FORMAT 1/ FORMAT 2	Baud Rate (bps)	Data (bits)	Parity	Stop (bits)	ASCII/ RTU	
0		Sof	tware set	ting		8	38400	8	None	2	RTU	
1	9600	7	Even	1	ASCII	9	38400	8	None	1	RTU	
2	9600	8	Even	1	RTU	Α	38400	7	Even	1	ASCII	
3	9600	7	None	2	ASCII	В	57600	8	None	1	ASCII	
4	9600	8	None	1	RTU	С	76800	8	None	1	RTU	
5	19200	7	Even	1	ASCII	D	115200	7	None	1	ASCII	
6	19200	8	None	1	RTU	Е	115200	8	Even	1	RTU	

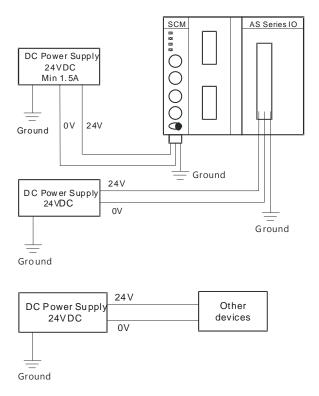
CARD2 for AS-FCOPM (COM. Mode)										
FORMAT 2	1	2	3	4	5	6	7	8-F		
Bit Rates (bps)	10k	20k	50k	125k	250k	500k	1000k	N/A		
Distance (m)	5000	2500	1000	500	250	100	25	N/A		

RTU Mode COM. RTU											
FORMAT 2	1	2	3	4	5	6	7	8-F			
Bit Rates (bps)	10k	20k	50k	125k	250k	500k	1000k	N/A			
Distance (m)	5000	2500	1000	500	250	100	25	N/A			

8.2.3 Wiring

8.2.3.1 ASOOSCM-A Power Wiring

COM mode:


Switch the work mode to COM. Install the module on the right hand side of the AS Series CPU. To avoid problems, do not use an external power supply for this module.

RTU mode:

Switch the work mode to RTU. This module is equipped with an independent DC power connecter.

To ensure the serial communication module functions well and reliably, the external wiring must prevent noise. Before you install cables, follow the precautions below.

(1) To prevent a surge and induction, the DC cable and other power cables that are connected to the AS00SCM-A must be separate cables. An independent power supply is recommended for the AS00SCM-A.

- (2) The 24 VDC cable should be twisted pair, and the shorter end should be connected to the module.
- (3) The cable (110 VAC, 220 VAC, and 24 VDC) must not be installed near a main circuit, a high-voltage cable, or a cable connected to a load that is not a PLC. In addition, the cable must not be bound to a main circuit, a high-voltage cable, or a cable connected to a load that is not a PLC. All the cables should be wired at least 100 mm apart.
- (4) Ground the power supply using a 14 AWG wire.
- (5) Connect 20–14 AWG (1 mm) wires to the input/output terminals. Use only copper leads that can resist temperatures above 60° C /75° C.

8.2.3.2 ASOOSCM-A Communication Interface

COM mode:

This module comes with two function card slots, supporting AS-F232, AS-F422, and AS-F485 communication cards. The card 2 slot also supports the AS-FCOPM communication card when the firmware is V2.00 or later. Refer to Chapter 9 for more information about wiring the cards.

RTU mode:

The card 2 slot supports the AS-FCOPM communication card when the firmware is V2.00 or later and supports AS-FEN02 when the firmware is V2.02. For wiring information, refer to Chapter 9.

8.3 COM mode

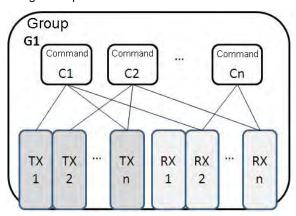
This section introduces communication modes of AS00SCM-A module (firmware V2.00) when the communication protocol is Modbus or CANopen.

8.3.1 Modbus

The AS00SCM-A supports standard communication protocols such as Modbus RS232, RS422, and RS485. Once you create the data exchange table, you can exchange data with slave modules.

To initialize Modbus communication:

- 1. Set up the communication protocol.
- 2. Create the data exchange table.
- 3. Download HWCONFIG.
- Enable this function.

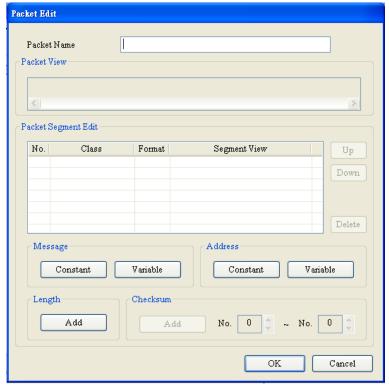

Refer to Section 8.3 Data Exchange in the AS Series Operation manual for more information on the data exchange setup.

8.3.2 UD Link

This section introduces the use of UD Link communications in COM mode. You can do this configuration in SCMSoft. Refer to Section 8.3.2.1 for more details on UD Link and refer to Section 8.5 for use of the software.

The UD Link provides communication without using Modbus RS485 or RS422. You can edit a packet according to its communication format. The steps for creating a UD Link are:

- 1. Create a group.
- 2. Edit TX and RX packets.
- 3. Create commands.
- 4. Download the group.
- 5. Start the sending and receiving of the packets.



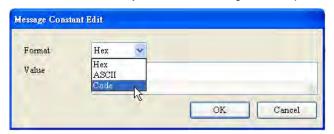
First, create TX and RX packets in a group. Then, set the sequence for sending and receiving the packets, as well as the number of times the packets are sent and received. Finally, start sending and receiving the packets in the group. If several different types of packets are required in a larger system, you can also arrange several groups in sequence and set the sequence of sending/receiving the packets in each group.

8_

8.3.2.1 TX Packets and RX Packets

You can create several TX and RX packets in a group. A packet includes messages, an address, a length, and a checksum.

- Packet Name: enter the packet name.
- Packet View: shows the packet contents.
- Packet Segment Edit: adjust the sequence of segments and add or delete segments.

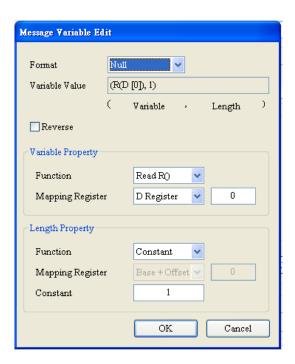

No.: the segment number. You can create no more than 64 segments.

Class: the segment class. The available classes are Message, Address, Length, and Checksum.

Format: the data format of the segment. The available data formats are Hex (hexadecimal), ASCII, and Code.

Segment View: the contents of the segment

- **Message**: a message may be either Constant or Variable. Messages can be applied to a header segment, a start bit segment, an end bit segment, and a data segment. There can be several messages in a packet.
- Address: an address may be either Constant or Variable. There can be only one address segment in a packet.
- Length: enter the length of a packet. There can be only one length segment in a packet.
- Checksum: edit the checksum. There can be only one checksum segment in a packet.



8

• Constant: enter a constant.

Format: Select Hex, ASCII, or Code in the Format box. If you select Code, the data is a control code.

Value: enter a constant.

- Variable: data is a variable read from the module. Specify either an internal register in AH10SCM-A or a register in a CPU module.
- Format: select the format for the data.

Null: data is not processed.

Hex: ASCII data is converted into hexadecimal data. ASCII data that cannot be converted into hexadecimal data is converted into 0.

ASCII: Hexadecimal data is converted into ASCII data. Hexadecimal data that cannot be converted into ASCII data is converted into 0.

• **Reverse**: the high byte of a one-word checksum which is calculated, and the low byte of the checksum are reversed.

Variable Property:

Function: for a TX packet, select Read R() for the Function. For an RX packet, select Read R(), Write W(), or * for the Function.

Mapping Register: select a register in the PLC.

• Length Property:

Function: for a TX packet, select Read R() for the Function. For an RX packet, select Read R(), Write W(), or * for the Function.

Mapping Register: select a register in the PLC.

Constant: enter a constant.

· Length:

Class: select 1 Byte or 2 Bytes for the Class.

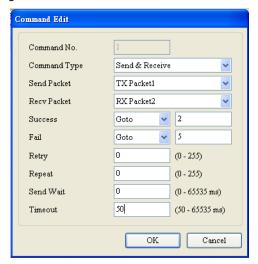
Format: select Hex or ASCII for the Format.

Value: enter a length. Unit: byte

8

· Checksum:

Class: select a Class.


Format: select the Format for the checksum.

Initial value: set the initial value for the checksum.

Reverse: the high byte of a one-word checksum is calculated, and the high byte and low byte of the checksum are

8.3.2.2 Command

After creating several TX and RX packets, create commands to select packets to be sent and packets to be received. Also create a sequence for executing the commands.

- **Command No.**: every command has a number. The Command Number indicates the execution sequence.
- Command Type: select Send, Receive, or Send & Receive for the Command Type.
- Send Packet: select a packet to send.
- Receive Packet: select a packet to receive.
- Success: specify the action to follow the successful execution of the command: Next, Goto, or End.
 - **Next**: the next command is executed based on Command Number. If the command that is being executed is command 1, the next command that will be executed is command 2.
 - Goto: specify a later command to be executed based on its Command Number.
 - End: end the sequence of commands.
- Fail: specify the action to follow the failure of the command: Next, Goto, or Abort.
 - **Next**: the next command is executed based on Command Number. If the command that is being executed is command 1, the next command that will be executed is command 2.
 - Goto: specify a later command to be executed based on its Command Number.
 - **Abort**: end the sequence of commands.
- Retry: set the number of times the command will be retried after a failure.
- Repeat: set the number of times the command will be repeated after successful execution.

- Send Wait: set an interval in milliseconds for the sequence to wait between commands. The default is 0
 milliseconds, which causes the next command to be executed immediately after a reply is received.
- **Timeout**: set the amount of time in milliseconds for the system to wait for the command to be executed before the system reports a communication timeout. The default is 50 milliseconds. When it is set to 0, there is no timeout message.

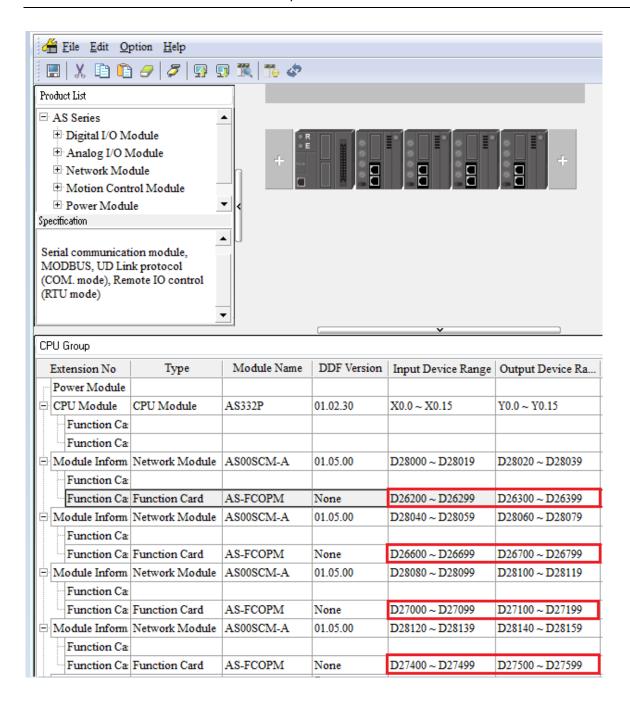
8.3.3 CANopen Mode

The AS00SCM-A (firmware V2.00 or later) can be connected to an AS-FCOPM module through the card 2 slot. It can then be used as a slave for other master modules in the CANopen network environment.

8.3.3.1 Features

When using the AS00SCM-A as a slave module, it has the following features:

- Complies with CANopen DS301 V4.02
- Supports NMT Slave
- Error-controlled; supports Heartbeat and Node-Guarding Protocols
- Supports PDO; up to 8 TxPDO and 8 RxPDO can be configured for every slave.
- Supports SDO:


Server: 1 User: 0

Supports SDO (expedited SDO) transmission mode

• Supports Emergency Protocol

8.3.3.2 Corresponding Input / Output Device Range

When the AS00SCM-A module acts as a CANopen slave, the CPU PLC assigns the input/output device ranges according to the placement of the AS00SCM-A. The corresponding input/output device ranges from the right hand side of the CPU PLC are shown in the example below from the HWCONFIG utility.

8.4 RTU Mode

8.4.1 CANopen Mode (AS-FCOPM)

When the function card AS-FCOPM works with an AS series PLC, it supports three kinds of RTU modes, including AS Remote Communication, CANopen DS301 Mode and Delta Special Driver & AS Remote Mode. Use the switch FORMAT 1 to switch among three RTU modes.

A. RTU Communication Mode Setup Switch "FORMAT 1"

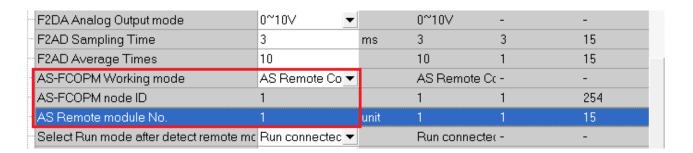
FORMAT1	Description
0	AS Remote Communication
4	CANopen DS301
8	Delta Special Driver & AS Remote Mode

B. Node ID Setup Switch "ID1/ID2"

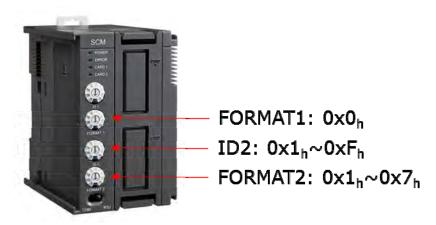
• ID1: 0 (recommended)

• ID2: 0 (the switch is no function; set up through ISPSoft); see the table below for the switch setting range.

RTU mode	ID2 setting range
AS Remote Communication	1~F
CANopen DS301	1~F
Delta Special Driver & AS Remote Mode	9~F

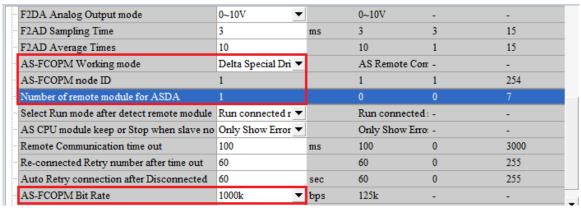

C. RTU Communication Speed Setup Switch "FORMAT 2"

FORMAT2	1	2	3	4	5	6	7	8-F
Byte (bps)	10K	20K	50K	125K	250K	500K	1000K	NA
Distance (m)	5000	2500	1000	500	250	100	25	NA

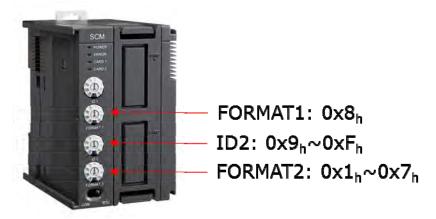

• AS Remote Communication Mode

Double-click the AS Series PLC, then in Device Setting click **Function Card 2 Setting** and set the function card 2 to AS-FCOPM, set to working mode to AS Remote Communication Mode and enter the number of the AS remote module.

Parameter name	Value	Unit	Default	Minimum	Maximum ▲
Card 2 Detect mode	Manual	▼	Auto Detect	-	-
Manual Select Card	AS-FCOPM Ca	∍ ▼	None	-	-
Card 2 ID No.	1		1	1	254
- Protocol Setup Opportunity	Stop -> Run	▼	Stop -> Run	-	-
Baud Rate	9600	▼ bps	9600	-	-
Data bit	7	▼ bit	7	-	-
Parity bit	Even	▼	Even	-	-
Stop bit	1	▼ bit	1	-	-
MODBUS mode	ASCII	▼	ASCII	-	-
Delay time to Reply	0	ms	0	0	3000
Received Data Timeout	200	ms	200	0	3000
F2AD Analog Input mode	0~10V	▼	0~10V	-	

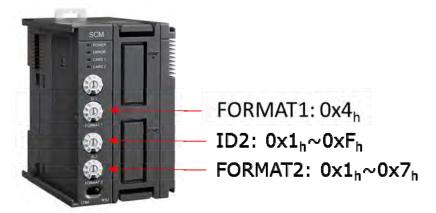

Turn the FORMAT1 switch to 0, and the adjustable range for station knob ID2 becomes 0x1h–0xFh. In AS Remote Communication mode, an AS series CPU PLC can connect to as many as 15 AS00SCM-A modules, as long as they are all in RTU mode. The RTU station number should be set from 1 to 15 in numerical order.

Delta Special Driver & AS Remote Mode


Double-click the AS Series PLC, then in Device Setting click **Function Card 2 Setting** and set the function card 2 to AS-FCOPM, set to working mode to Delta Special Driver & AS Remote Mode and enter the number of the AS remote module.

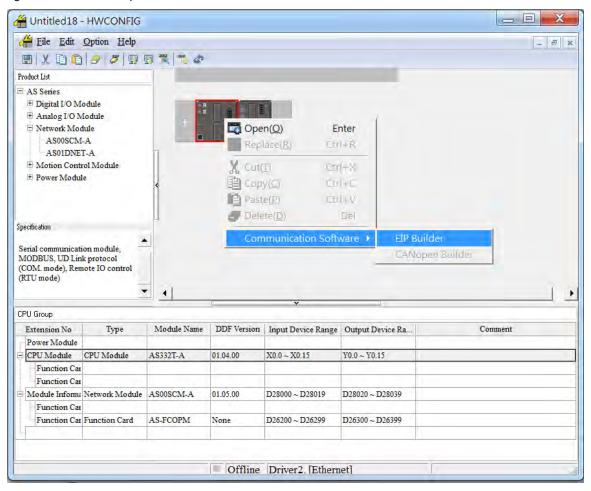
Parameter name	Value		Unit	Default	Minimum	Maximum
Card 2 Detect mode	Manual	~		Auto Detect	-	-
Manual Select Card	AS-FCOPM C	ar(▼		None	-	-
Card 2 ID No.	1			1	1	254
Protocol Setup Opportunity	Stop> Run	•		Stop> Run	-	-
Baud Rate	9600	•	bps	9600	-	-
Data bit	7	•	bit	7	-	-
Parity bit	Even	•		Even	-	-
Stop bit	1	•	bit	1	-	-
MODBUS mode	ASCII	•		ASCII	-	-
Delay time to Reply	0		ms	0	0	3000
Received Data Timeout	200		ms	200	0	3000
F2AD Analog Input mode	0~10V	▼		0~10V	-	-

Turn the FORMAT1 switch to 8, and the adjustable range for station knob ID2 becomes 0x9h–0xFh. In the Delta Special Driver & AS Remote Mode, an AS series CPU PLC can connect to as many as 7 AS00SCM-A modules, as long as they are all in RTU mode. The RTU station number should be set from 9 to 15 in numerical order.

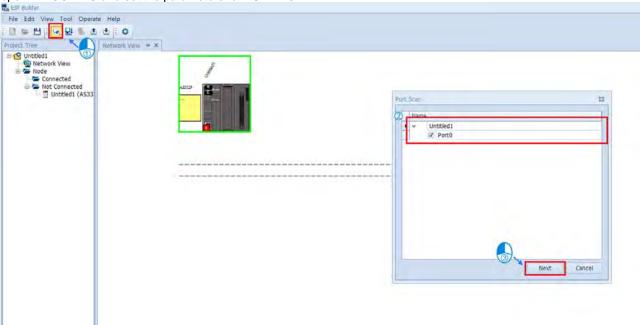

NOTE: The communication baud rate of the AS-FCOPM and FORMAT2 should be the same.

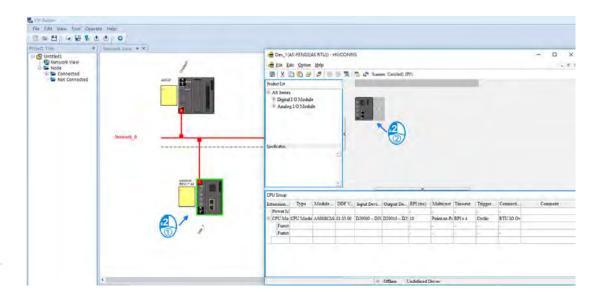
CANopen DS301 Mode

Double-click the AS Series PLC, then in Device Setting click **Function Card 2 Setting** and set the function card 2 to AS-FCOPM, set to working mode to CANopen DS301.


Turn the FORMAT1 switch to 44, and the adjustable range for station knob ID2 becomes 0x1h~0xFh. This mode is used to communicate with a Master PLC from other brand. To make it work, you need to set up the AS series PLC. See the detail in section 8.6.3. when the PDO data is mapped, AS00SCM-A can control the IO modules from its right side.

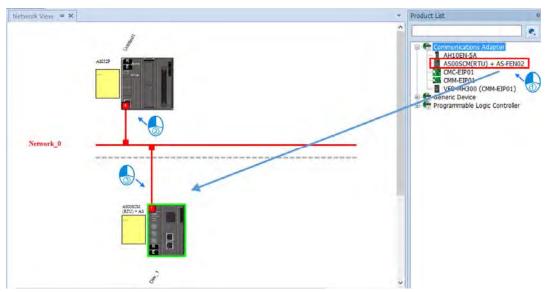
8.4.2 EtherNet/IP Mode (AS-FEN02)


When the firmware is V2.02 or later, AS-FEN02 can be installed on AS Series PLC or AS00SCM-A.

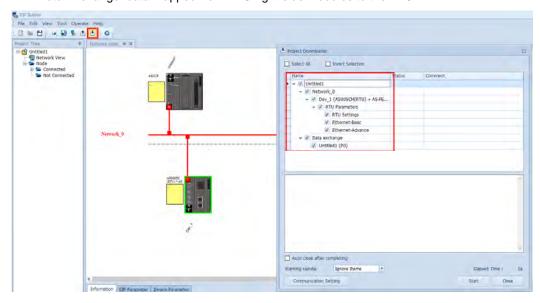

- When AS-FEN02 is installed on AS Series PLC, it can be used as the Ethernet port of the CPU. It can act as a
 Master and connect to other Slaves through EtherNet/IP, or acts as a Slave for other CPU. Refer to Chapter 9 in
 AS Series Operation Manual for reference.
- When AS-FEN02 is installed on AS00SCM-A, it can only be used in RTU mode. A connection of AS00SCM-A
 with AS-FEN02 installed to AS Series PLC can be created through EtherNet/IP. And a CPU, module, and
 computer can be connected together through an Ethernet switch. Configure the parameters in HWCONFIG and
 right-click the CPU to open EIP Builder.

• Scan the Network to make a network connection

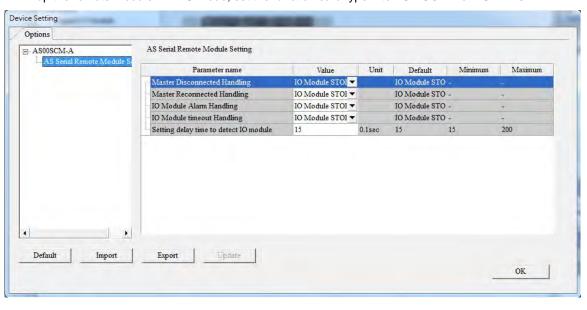
Scan the network and add AS Series PLC and AS-FEN02 (AS RTU) to the same Network. Double-click AS-FEN02 to open HWCONFIG and set the parameters for AS-FEN02.



• Drag and drop the module into the network view to make a network connection


If the PLC is not connected to any module, you can drag and drop AS-FEN02 (AS RTU) from the Product List on the right to add it into the Network View. To make a connection. Click and hold the mouse and then drag a line from the PLC and from AS-FEN02 toward the Network_0, and then double-click AS-FEN02 to open HWCONFIG and set the parameters for AS-FEN02.

Download the parameters

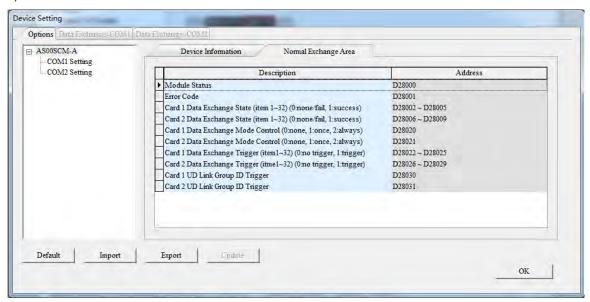

After the settings are complete, click the Downloader icon and then select the parameters that you'd like to download. **Parameters include:**

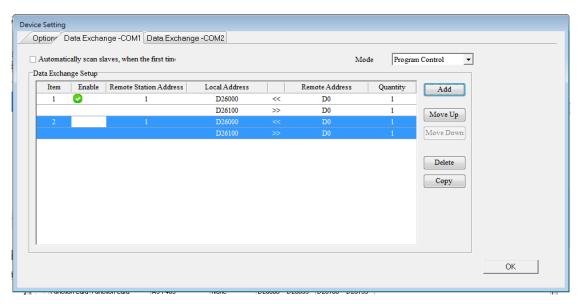
- RTU parameters: all the parameters set in the previous step
- Data Exchange: data mapped from RTU right-side modules to the PLC

8.4.3 Remote Module Setting

• Double-click AS00SCM-A -> AS remote module in Device Setting and click **AS Serial Remote Module**. To set up the remote module in RTU mode, set the function card type 2 to AS-FCOPM or AS-FEN02:

For the following four situations, you can either stop I/O module (all I/O modules stop running) or keep I/O module running (all I/O modules keep the same state).

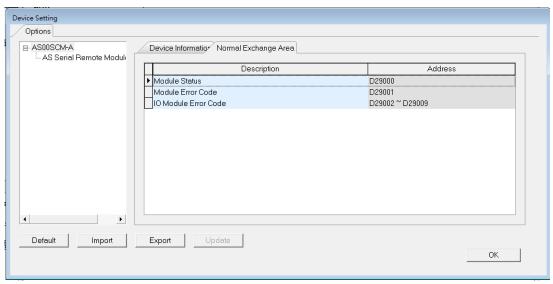

- 1) When a Master connection is lost
- 2) When a Master has reconnected after the connection lost
- 3) When an alarm occurs in an I/O module
- 4) When an I/O connection is lost


Procedure	Settings (RTU)	Digital & Analog Input Modules	Digital Output Modules	Analog Out	-	
		input wodules	Wiodules	Clear	Keep	
Master connection	I/O module stops running	Cannot update data on the master	Output value = 0	Output value = 0	No change to the output value	
iost	I/O module keeps the same state		No change	to the output v	/alue	
Master has reconnected after	I/O module stops running	Keep updating data on the master	Output value = 0	Output value = 0	No change to the output value	
connection lost.	I/O module keeps the same state		Output value = output value of the master			
Alarm in I/O module (Ex.	I/O module stops running	No change to the output value	Output value = 0	Output value = 0	No change to the output value	
module is broken)	I/O module keeps the same state	Other functional modules: keep updating data on the master		unctional modules: output value of the master		
I/O connection	I/O module stops running	No change to the output value	Output value = 0	Output value = 0	No change to the output value	
lost (Ex. unstable connection)	I/O module keeps the same state	Other functional modules: keep updating data on the master	Other functional modules: output value = output value of the mast			

- Module configurations: refer to Section 8.1.2 in the AS Series Operation Manual.
- Module setups: refer to other chapters in the AS Series Module Manual.

8.5 Normal Exchange Area

1) COM mode



In the examples above, note that the Normal Exchange Area shows the corresponding data registers of the module and the PLC.

- Module Status: 0 = stop, 1 = run
- Error Code: refer to Section 8.7 for more information.
- Card 1 & Card 2 Data Exchange State: occupies 4 data registers (32-bit data); each bit 1–32 represents the state of the corresponding data point 1–32 to be exchanged: 0 = none/fail, 1 = success
- Card 1 & Card 2 Data Exchange Mode Control: set the data register to 0: none, 1: once, 2: always.
- Card 1 & Card 2 Data Exchange Trigger: occupies 4 data registers; each bit 1–32 represents the state of the corresponding data point 1–32 to be exchanged: 0 = no trigger, 1 = trigger
- Card 1 & Card 2 UD Link Group ID Trigger: set the group ID to be triggered.

8

2) RTU Mode:

- Module Status: 0 = stop, 1 = run
- Module Error Code: refer to Section 8.7 for more information.
- I/O Module Error Code: refer to the I/O module manual for more information.

8.6 Application

8.6.1 Modbus

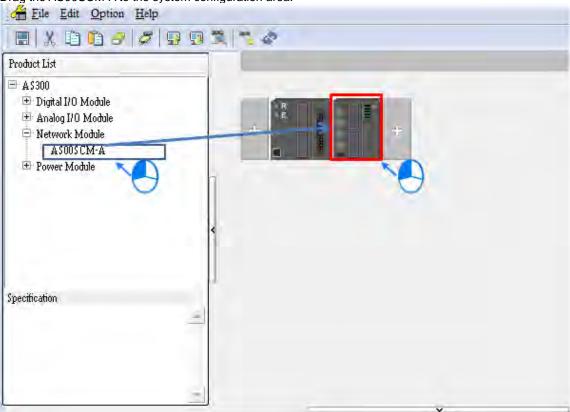
This section introduces how to use the Modbus protocol to connect the AS00SCM-A to other Delta industrial products such as human-machine interfaces, temperature controllers, programmable logic controllers, AC motor drives, and servo motors.

The structures:

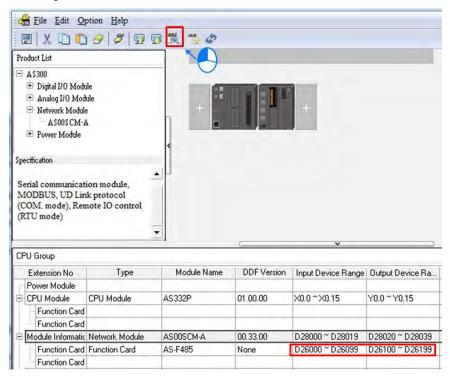
Example of a slave structure: HMI (master station) → AS-F485 + AS00SCM-A COM1 (slave station)

Example of a master structure: AS-F485 + AS00SCM-A COM2 (master station) → VFD, ASDA, and DVP series PLC

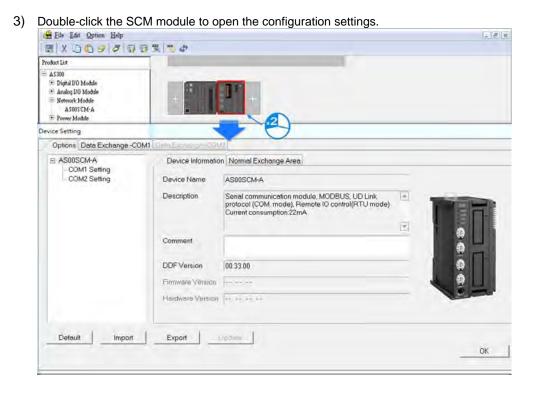
Product	Slave ID	Communication protocol	Device from which data is read	Register in the CPU module	Device into which data is written	Register in the CPU module
HMI	5	9600, RTU, 8, E, 1	16#0100	D26100	16#0000	D26000
VFD	10	38400, ASCII, 7, E, 1	16#2103	D26200	16#2000 16#2001	D26300- D26301
ASDA	11	38400, ASCII, 7, E, 1	16#0101 16#020A	D200, D201	16#0101 16#020A	D250, D251
PLC	12	38400, ASCII, 7, E, 1	D100-D109	D300-D309	D200-D204	D350-D354

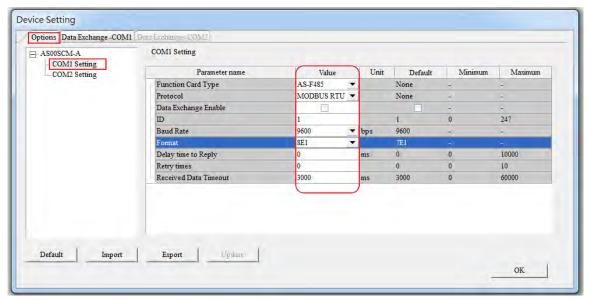

8.6.1.1 Modbus Slave-Connection to Delta Products

The following table shows the slave station supports the following function codes and their corresponding addresses.

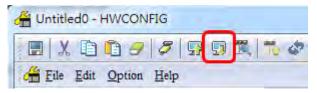

Function Code	Attribute	Addresses Supported	
	Read	16#0000–16#0063	
0x03		16#0100–16#0163	
0x04		16#0200–16#0263	
		16#0300–16#0363	
0x06	Write	16#0000–16#0063	
0x10		16#0200–16#0263	
	Read	16#0000–16#0063	
		16#0100–16#0163	
0.47		16#0200–16#0263	
0x17		16#0300–16#0363	
	Write	16#0000–16#0063	
		16#0200–16#0263	

If the AS00SCM-A functions as a Modbus slave, you need to set only a slave ID and a transmission speed.


1) Drag the AS00SCM-A to the system configuration area.


2) Click the I/O Scan button to make the system read the module's current configuration. The PLC assigns the input and output device ranges.

Function card	Device from which data is read	Register in the CPU module	Device into which data is written	Register in the CPU module
Function card 1	16#0000	D26000	16#0100	D26100
Function card 2	16#0200	D26200	16#0300	D26300



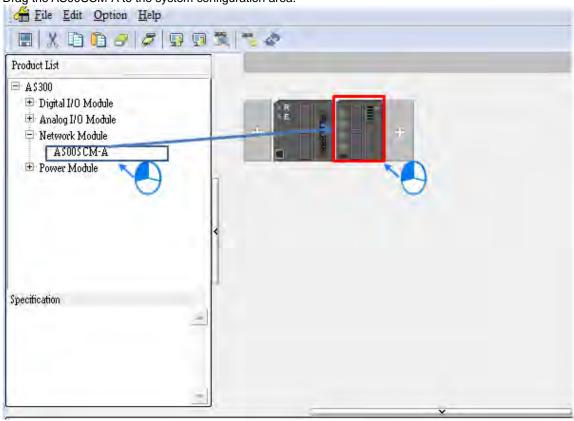
4) Set the communication protocol values for COM1 using the HMI settings.

Product	Slave ID	Communication protocol	Device from which data is read	Register in the CPU module	Device into which data is written	Register in the CPU module
НМІ	5	9600, RTU, 8, E, 1	0x0100	D26100	0x0000	D26000

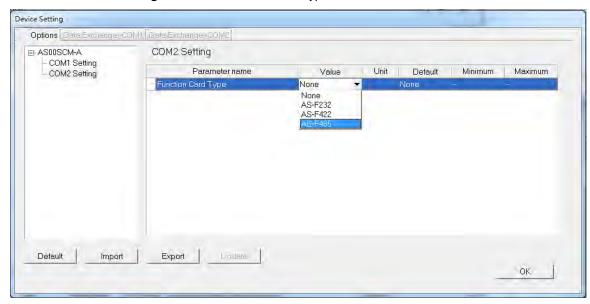
5) Click the Download button to download the parameters to the AS00SCM-A.

NOTE: Double-click the module to open the Device Setting dialog box to configure the parameters.

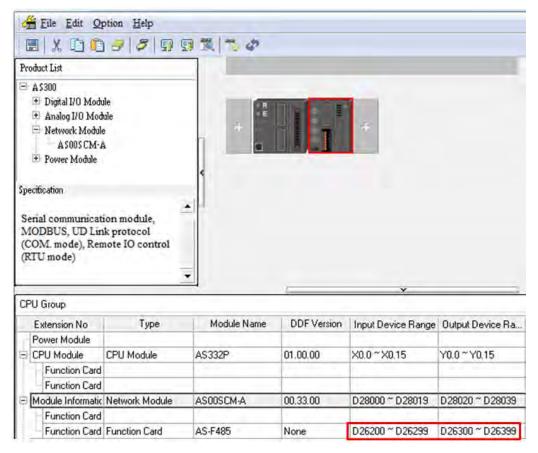
8.6.1.2 Modbus Master-Connection to Delta Products


This section introduces how to use COM2 to connect the AS00SCM-A to other Delta industrial products such as programmable logic controllers, AC motor drives, and servo motors.

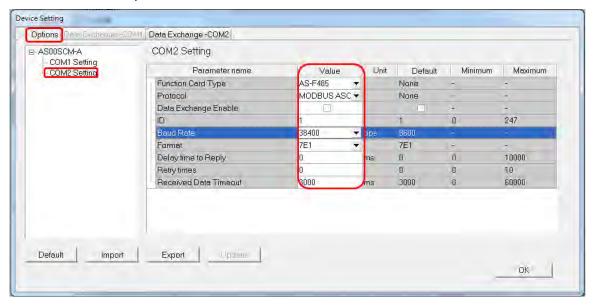
Product	Slave ID	Communication protocol	Device from which data is read	Register in the CPU module	Device into which data is written	Register in the CPU module
VFD	10	38400, ASCII, 7, E, 1	16#2103	D26200	16#2000 16#2001	D26300- D26301
ASDA	11	38400, ASCII, 7, E, 1	16#0101	D26210	16#0101	D26310
PLC	12	38400, ASCII, 7, E, 1	D100-D109	D26220- D26229	D200-D204	D26320- D26324

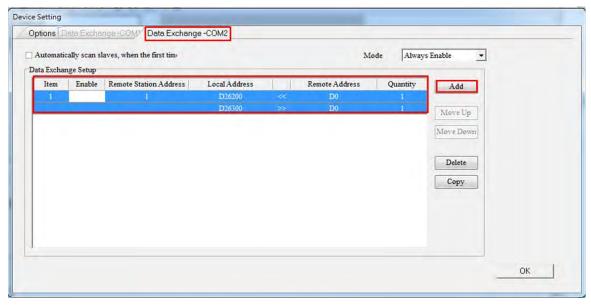

O

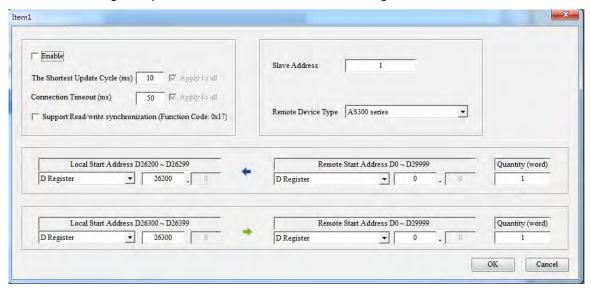
If the AS00SCM-A is functioning as a Modbus master, you need to set only a master ID and a transmission speed.


1) Drag the AS00SCM-A to the system configuration area.

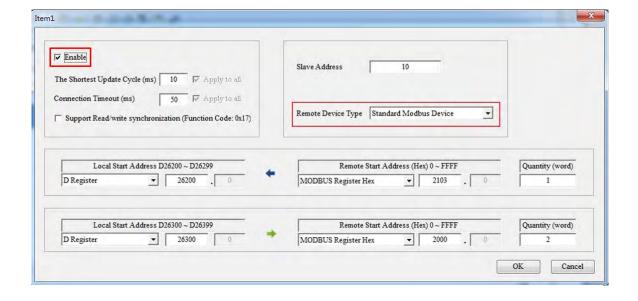
2) Double-click COM2 Setting and set the Function Card Type to AS-F485.


3) Click the I/O Scan button to make the system read the module's current configuration. The PLC assigns the input and output device ranges.

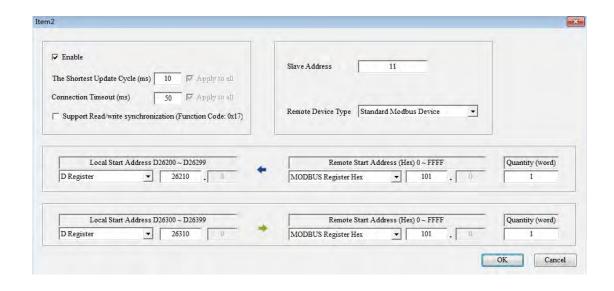

4) Double-click the SCM module to open the configuration settings.


5) Set the communication protocol values for COM2:

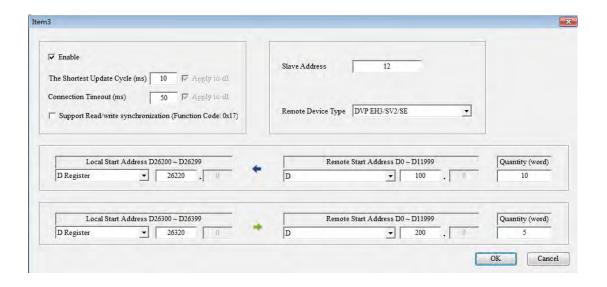
6) Set up the data exchange table: select **Data Exchange – COM2** and click **Add** to create a new Data Exchange Setup table.

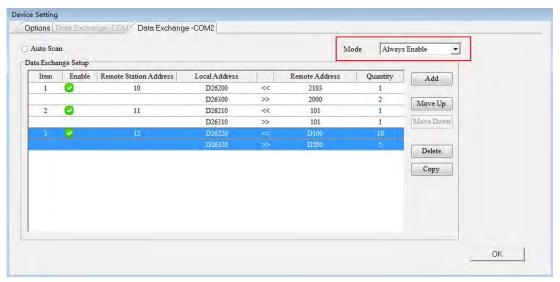


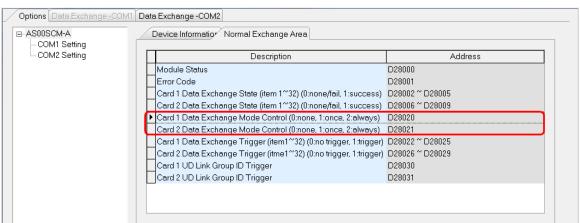
7) In the Data Exchange Setup table double-click an item to edit its settings.


• Select **Standard Modbus Device** as the **Remote Device Type**, enter the parameters, and check **Enable**.

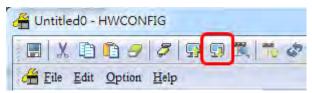
Product	Slave ID	Communication protocol	Device from which data is read	Register in the CPU module	Device into which data is written	Register in the CPU module
VFD	10	38400, ASCII, 7, E, 1	16#2103	D26200	16#2000 16#2001	D26300- D26301


 Select Standard Modbus Device as the Remote Device Type, enter the ASDA parameters, and check Enable.

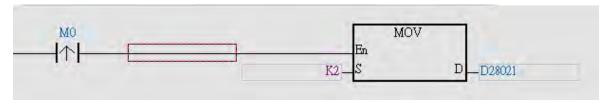

Product	Slave ID	Communication protocol	Device from which data is read	Register in the CPU module	Device into which data is written	Register in the CPU module
ASDA	11	38400, ASCII, 7, E, 1	16#0101	D26210	16#0101	D26310


• Select **PLC devices** as the **Remote Device Type**, enter the PLC parameters, and check **Enable**.

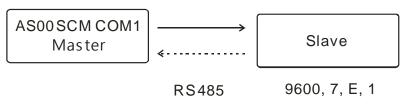
Product	Slave ID	Communication protocol	Device from which data is read	Register in the CPU module	Device into which data is written	Register in the CPU module
PLC	12	38400, ASCII, 7, E, 1	D100-D109	D26220- D26229	D200-D204	D26320- D26324



NOTE: If the Data Exchange Mode Control is set by the program, you can check and control the register address on the Normal Exchange Area page.

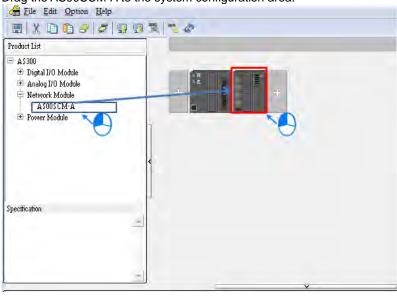


9) Download the parameters to the AS00SCM-A.

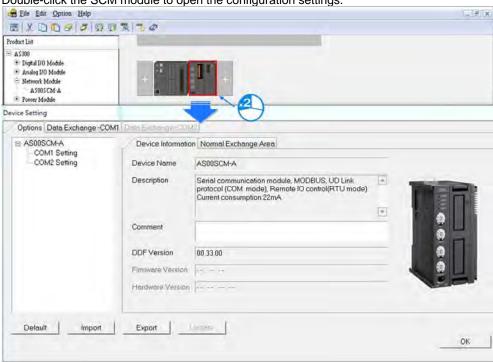

If you set Mode to Always Enable, the data exchange begins immediately after downloading the parameters.

If you set Mode to Program Control, the program starts the data exchange after downloading the parameters.

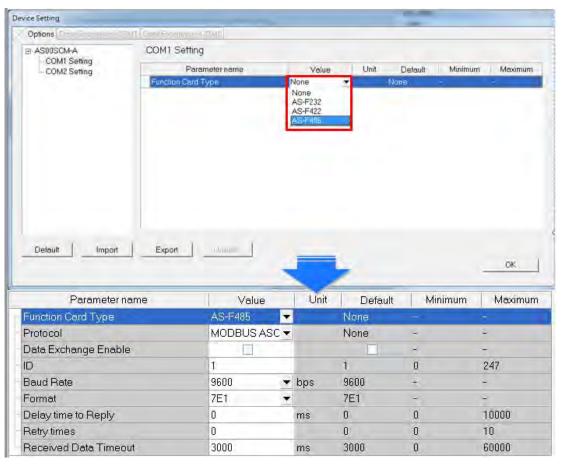
8.6.2 UD Link


This section introduces how to use a non-Modbus RS485 communication port on the AS00SCM-A to connect to other industrial products.

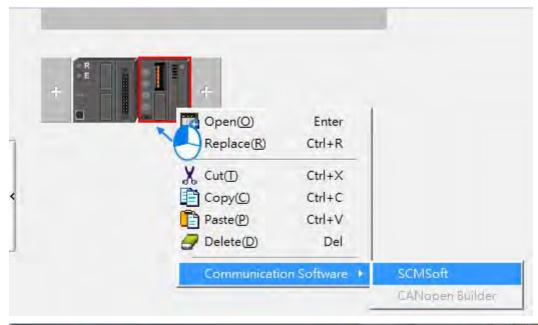
Communication with a slave

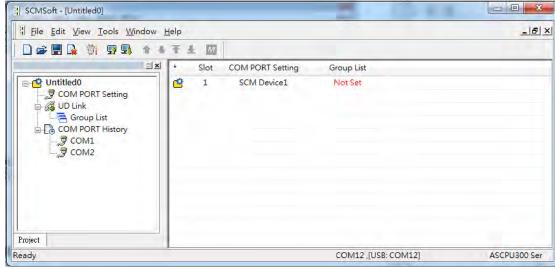

Packet to Send (→)	Packet to Receive (←)	Description
POS, xxx, yyy	POS, ACT	xxx and yyy are coordinates (0-999)

1) Drag the AS00SCM-A to the system configuration area.

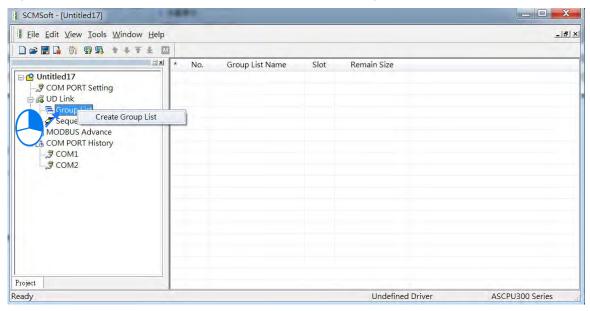


2) Double-click the SCM module to open the configuration settings.

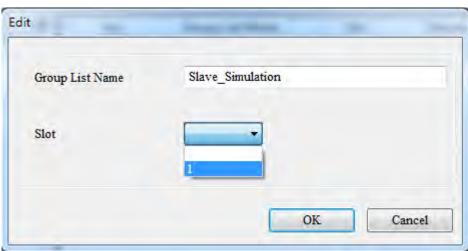

3) Select AS-F485 as the Function Card Type for COM1.



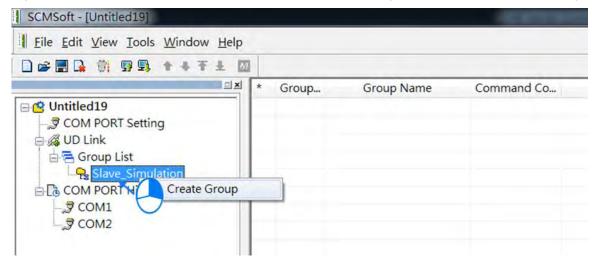
4) Select UD Link as the Protocol, set the Baud Rate and Format, and click OK.


Parameter name	Value	Unit	Default	Minimum	Maximum
Function Card Type	AS-F485	▼	None	-	-
- Protocol	UD LINK	▼	None		
Baud Rate	9600	▼ bps	9600	-	-
Format	7E1	▼	7E1	-	-

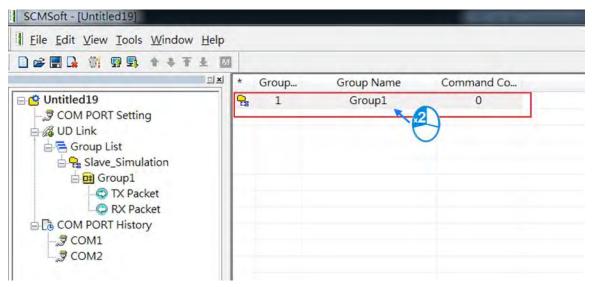
5) Right-click the AS00SCM-A and click **Communication Software** and then click **SCMSoft**.


6) Right-click Group List and then click Create Group List to create a group list.

7) You can find a created Group List1. Double-click it to open an editing window to edit the Group List Name and the Slot.

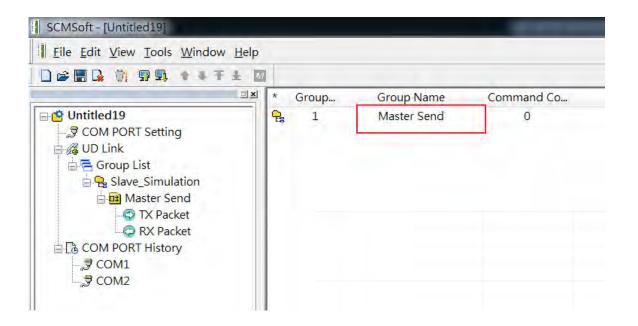


Give the group list a Name (this example uses "Slave_Simulation") and select 1 (COM1) as the **Slot** number.

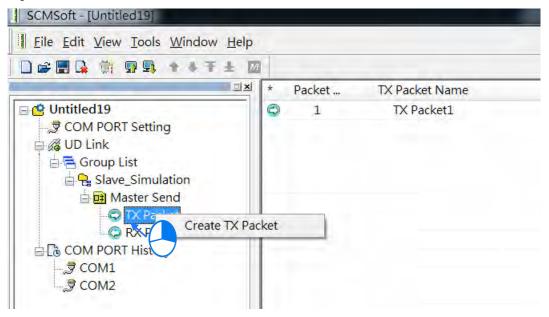


O

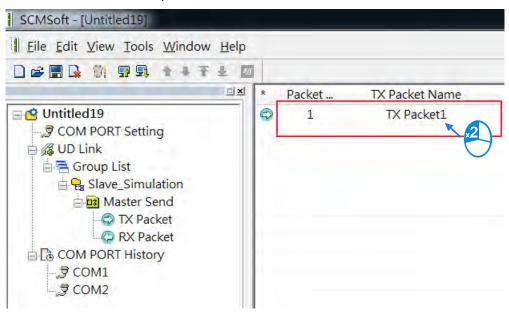
8) Right-click Slave_Simulation and click Create Group List to create a group list for the Slave_Simulation group.



9) You can find a created Group List1. Double-click it to open an editing window to edit the Group List Name and the Slot.



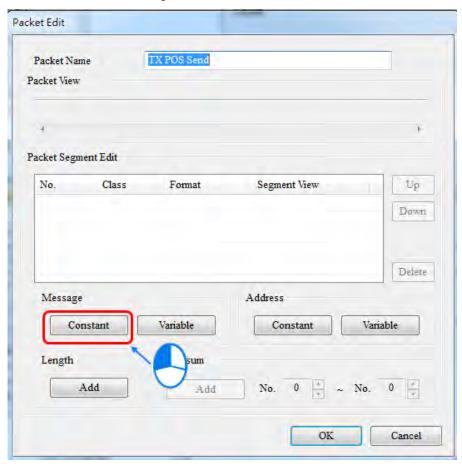
Create a group and name it "Master Send".

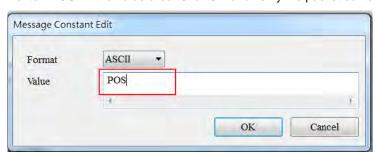


10) Right-click TX Packet and click TX Packet to create a TX Packet1.

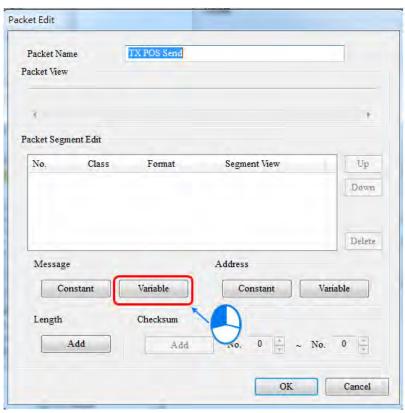


8

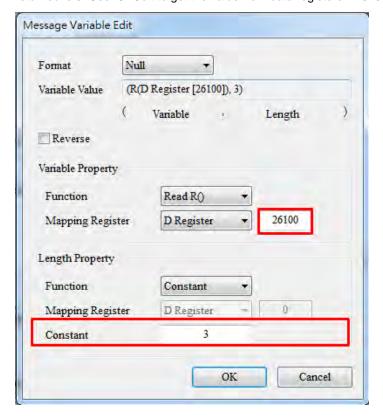

11) Double-click TX Packet1 to open the Packet Edit form.


12) Give the Packet a Name (This example uses "TX POS Send")

- 13) Edit the TX packet, "POS, xxx, yyy" (The example below uses POS, 123, 123)
- 14) Click Constant in the Message area.



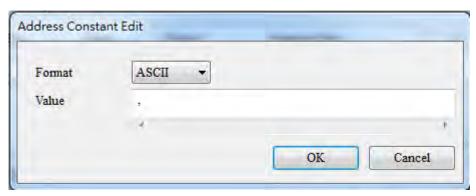
Eenter "POS" in the Value area. Click **OK** and verify the packet contents in the Packet View.



Ö

15) [xxx] is a variable, so click **Variable** in the Message area to edit it. Use ISPSoft to get the value from data registers D26100–D26101. The example below uses D26100: 16#3132 and D26101: 16#3300 and the value is 123.

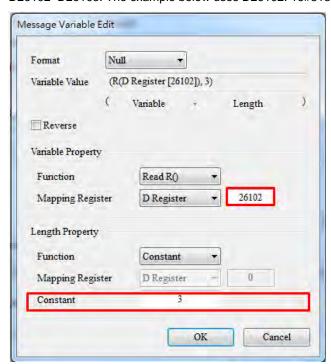
16) Enter the data register that contains the value you want to find. The example below uses D26100 and the value returned is 3. Use ISPSoft to get the value from data registers D26100–D26199.



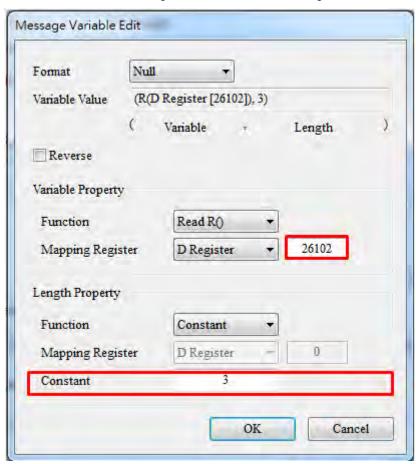
Click **OK** and verify the values ("POS,"+ (R (D Register [26100], 3)) in the Packet View.

```
Packet View

"POS," + (R(D Register [26100]), 3)
```

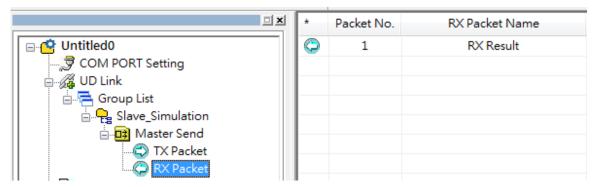

17) [\cdot]: Use Address Constant to enter this Value and set the Format to ASCII.

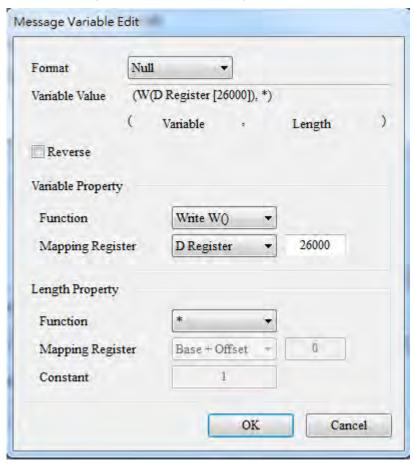
Click OK and verify the values ("POS,"+ (R (D Register [26100], 3)) in the Packet View.



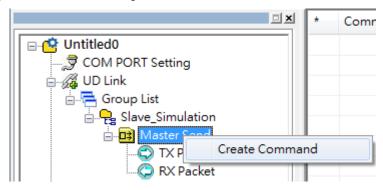
18) [yyy] is a variable, so click **Variable** in the Message area to edit it. Use ISPSoft to get the value from data registers D26102–D26103. The example below uses D26102: 16#3132 and D26103: 16#3300 and the value is 123.

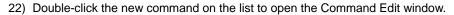
8_

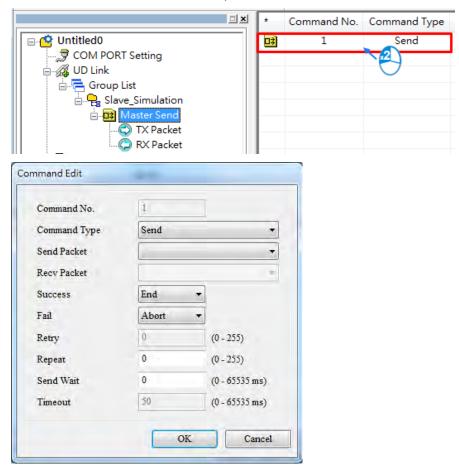

19) Enter the data register that contains the value you want to find. The example below uses D26102 and the value returned is 3. Use ISPSoft to get the value from the data registers D26100–D26199.


Click **OK** and verify the values ("POS,"+ (R (D Register [26102], 3)) in the Packet View.

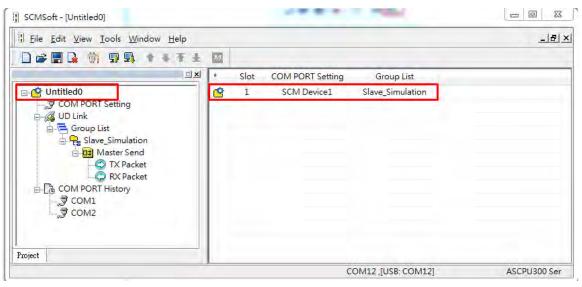
20) Edit the packet: Create a packet and name it "RX Result". Double-click it to open the editing window.

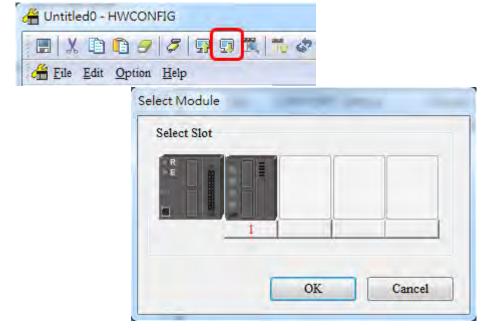

Enter the sending packet into the D26000 register of the AS300 CPU. "*" indicates that the length is not specified.


The packet should look like the example below.

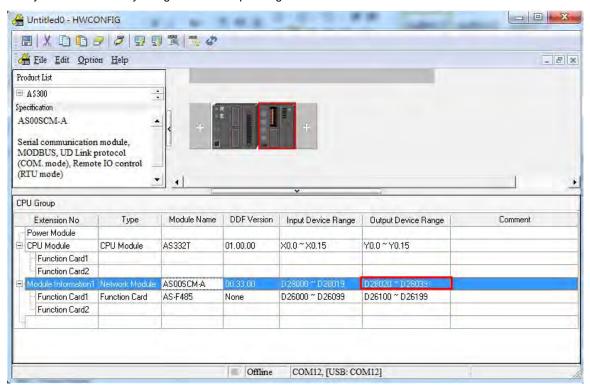


21) Create a command: Right-click Master Send and click the Create Command.

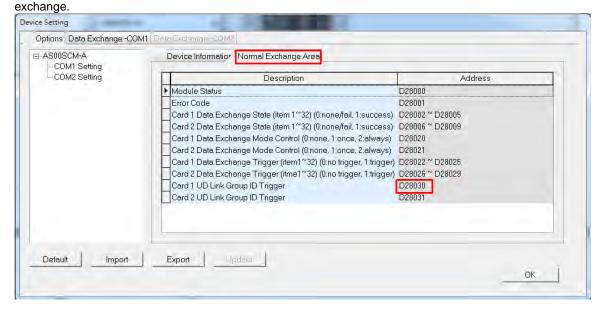



23) Set Send Packet to "TX POS Send" and set Recv Packet (received contents) to "RX Result".

24) Make sure the Group is in slot 1 (COM1).

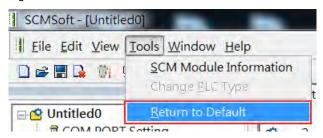


25) Click the Download button to download the parameters to the AS00SCM.



8

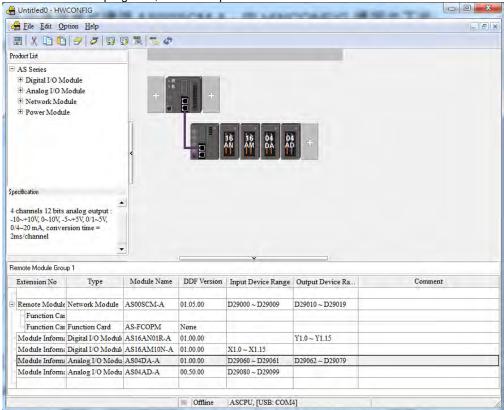
26) Set up the devices for the UD Link Group ID Trigger in HWCONFIG. Once you create the AS00SCM-A module, the system automatically assigns the corresponding addresses.

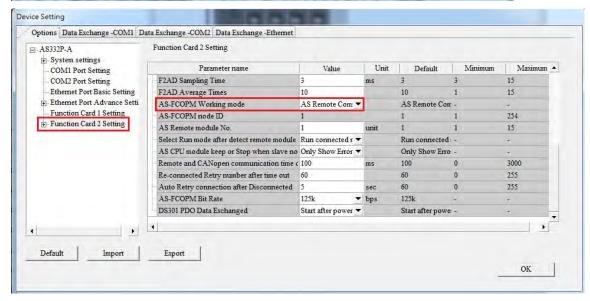

27) Double-click AS00SCM-A to open the Device Setting page. Verify that the Card 1 UD Link Group ID Trigger is set to D28030. Use ISPSoft to enter 1 into register D28030 to start the data

28) Use the monitor function in ISPSoft to verify that the transmission is working correctly.

D26100			12	123*	0.000	ASCII ▼
D26101			3*	3*12	0.000	ASCII ▼
D26102	Send	1	12	123*	0.000	ASCII ▼
D26103			3*	3***	0.000	ASCII ▼
D26000			PO	POS,	740081729536.000	ASCII ▼
D26001	Recei	VO.	S,	S,AC	12.207	ASCII ▼
D26002	Recei	ve	AC	ACT*	2203402895360.000	ASCII ▼
D26003			T*	T***	0.000	ASCII ▼

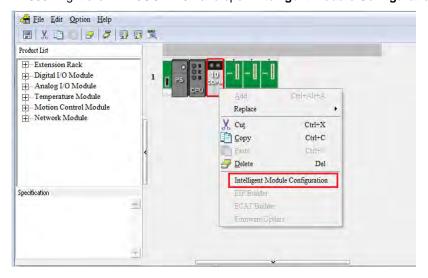
29) Select *Tools -> Return to Default* to clear the previous settings and have all the settings back to defaults. After this, turn the power off and on again.


8.6.3 Remote IO Application (AS-FCOPM)

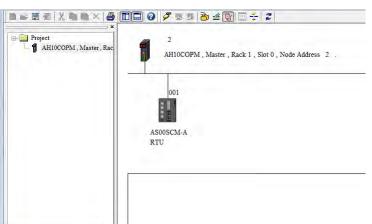

This example shows other series PLC, AH10COPM-5A, as a CANopen Master that controls four IO modules on the right side of AS00SCM-A that acts as a CANopen Slave. (You can use this method to connect to a 3rd party PLC.)

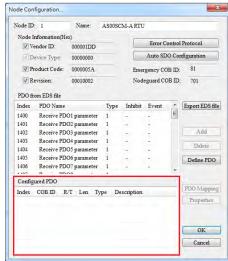
Device	Function
AS300	Scan and download AS00SCM-A (RTU mode), right side module configurations
AS00SCM-A + AS-FCOPM	CANopen Slave
AHCPU530-EN + AH10COPM-5A	CANopen Master
AS16AN10R-A	16 Digital outputs
AS16AM01N-A	16 Digital inputs
AS04DA-A	4 Analog channels for output
AS04AD-A	4 Analog channels for input

Step 1


Use AS300 to connect to AS00SCM-A through AS Remote Communication (RTU mode) and then use HWCONFIG to scan and download the parameters. If the Card 2 LED is blinking normally, with no error messages, and no need to download the PLC programs, the device power can be turned off. Refer to Section 8.4.1 for reference.

Step 2

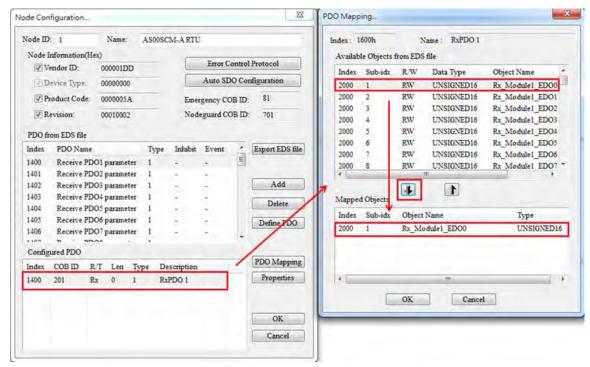

Switch the Format 1 of AS00SCM-A to 4 (using CANopen DS301 mode) and switch Format 2 to 7 (setting the bit rate to 1000kbps) and then turn the power off and on again. After that wiring AH10COPM-5A and set the node ID to 2 and set the bit rate to 1000kbps. Use ISPSoft (V3.04 or later) and HWCONFIG to scan and download the parameters to AH500. Right click AH10COPM-5A and open **Intelligent Module Configuration** (CANopen Builder) from the menu.



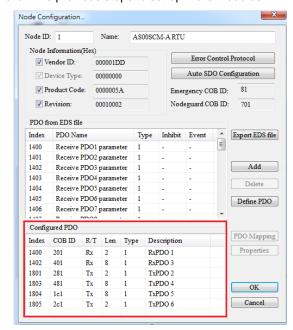
Step 3

Use CANopen Builder to scan the network. You should find Node ID 1 and its name should be AS00SCM-A RTU.

If not, check if you follow the first two steps right. And repeat the previous steps. Double click the module to open the **Node Configuration** window and set up the PDO manually. RPDO is for DO/AO and TPDO is for DI/AI and error codes of RTU/IO.


Q

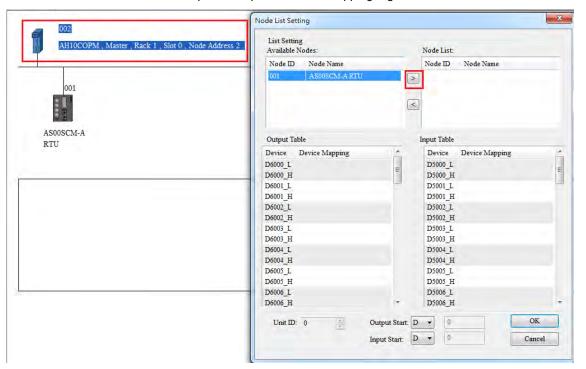
8


Step 4

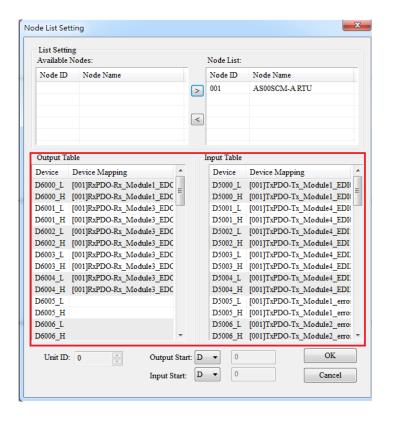
Here uses a first right side digital output module (16 points) as an example.

- Since it is the first one, here it corresponds to Receive PDO1, indicating it receives data from Master through CANopen communication. (If this is an input module, it sends data to Master through CANopen communication.)
 Double click to add it in the table. Double click the table to open the PDO setting window.
- 2. Since it is the first one, here it corresponds to Rx_Module 1. Its data length is 16 bits; thus only the object of one word Rx_Module1_EDO0 should be selected. If data length is 32 bits, objects of 2 words Rx_Module1_EDO0 and Rx_Module1_EDO1 should be selected in numerical order.

3. Follow the previous steps to set up more modules.

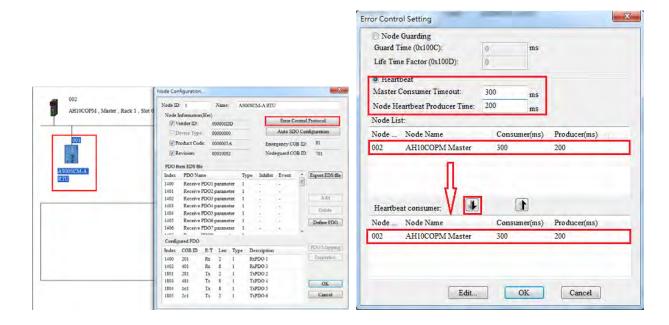


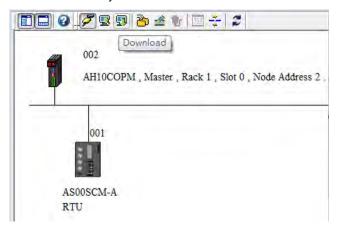
Device	Function	PDO	PDO Mapping	Mapping Registers
AS16AN01R-A	16 digital outputs	RxPDO1	Rx_Module1_EDO0	D6000
AS16AM01N-A	16 digital inputs	TxPDO2	Tx_Module2_EDI0	D5000
	4 Analog		Rx_Module3_EDO0	D6001
AS04DA-A	channels for	RxPDO3	Rx_Module3_EDO1	D6002
A3U4DA-A	output	KXPDO3	Rx_Module3_EDO2	D6003
	(Integer format)*		Rx_Module3_EDO3	D6004
	4 Analog		Tx_Module4_EDI0	D5001
AS04AD-A	channels for input	TxPDO4	Tx_Module4_EDI1	D5002
ASU4AD-A	(Integer format)*		Tx_Module4_EDI2	D5003
	(integer format)		Tx_Module4_EDI3	D5004
			Tx_Module1_error_code	D5005
IO Module		TxPDO5	Tx_Module2_error_code	D5006
Error Code	-	IXEDO3	Tx_Module3_error_code	D5007
			Tx_Module4_error_code	D5008
RTU Error Code	-	TxPDO6	Tx_RTU_error_code	D5009


^{*}Here the analog module uses integer format; if you need to use floating point format, two PDOs will be used per channel.

Step 5

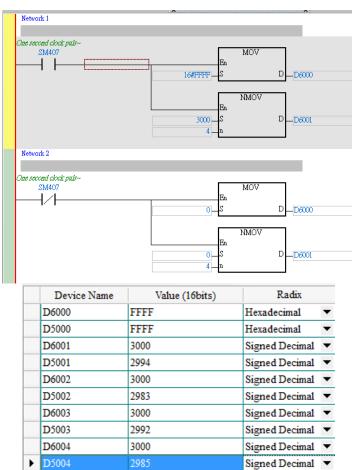
Double click the PLC icon and select Node ID 001 from the available nodes and then use the Right arrow to add the selected one into the Node List. Output and Input tables are mapping registers for PDOs.





Step 6

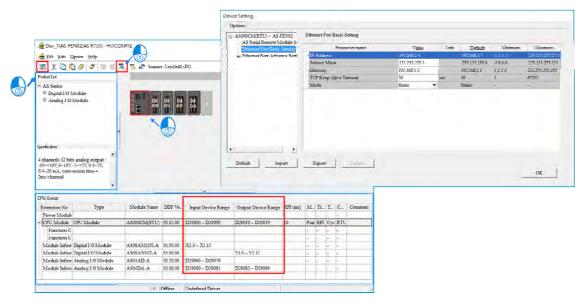
Double click the module icon and the **Node Configuration** window appears. Click **Error Control Protocol** and then Error Control Setting windows appears. Select **Heartbeat** and set values for the **Master Consumer Timeout** and **Node Heartbeat Producer Timer**. Select AH10COPM Master from the Node List and click the **Down** arrow to add it to the list of Heart Consumer and then disconnection detection is now available for AS00SCM-A (RTU mode).



Click OK to confirm the setting. Download the parameters to the PLC. And then PLC can control the input/output of the IO module remotely.

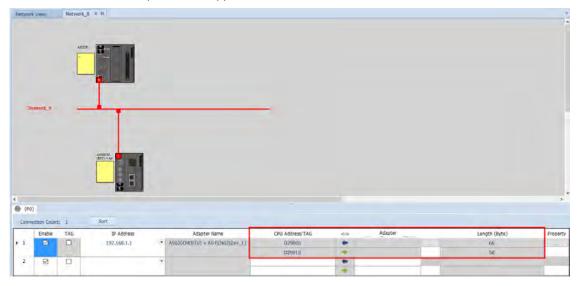
An example of using PLC to control the input/output of the IO module remotely:

Start ISPSoft and download the program from AH series PLC. Switch digital output module between 1 and 0 in every 0.5 seconds; change output values of the analog output module. Wire DI/DO modules to AI/AO modules and then you can see the changes of D6000 from D5000 and D6001-D6004 from D5001-D5004 as the example below shown. The module error codes are stored in D5005-D5009. Refer to relevant module manuals for error code definitions.


8.6.4 Remote IO Application (AS-FEN02)

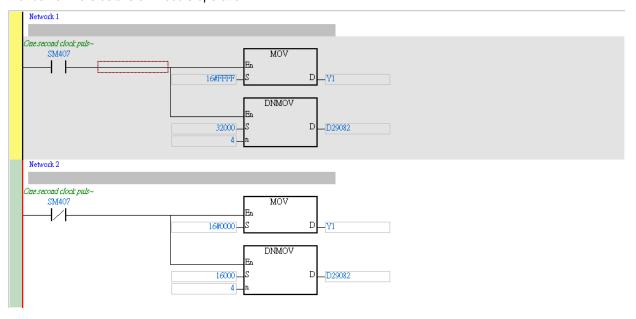
When the firmware is V2.02 or later, AS-FEN02 can be installed on AS00SCM-A (RTU mode) and then PLC can monitor right side IO modules remotely.

Device	Function	IP Address / Location	Data Mapping Range
AS300	EtherNet/IP Master	192.168.1.5	D29000~D29019
AS00SCM-A + AS-FEN02	EtherNet/IP Slave	/IP Slave 192.168.1.3	
AS08AM10N	Digital Input	right side of AS00SCM-A	X1.0~X1.15
AS08AN01T	Digital Output	right side of AS00SCM-A	Y1.0~Y1.15
AS04AD-A	Analog Input	right side of AS00SCM-A	D29060~D29079
AS04DA-A	Analog Output	right side of AS00SCM-A	D29080~D29099


Step 1

Scan the network and add AS00SCM-A (RTU) + AS-FEN02 to the Network. Double-click AS00SCM-A to open HWCONFIG and scan to obtain the module configuration and mapped register addresses. You can also edit the module configurations and write down the mapped register addresses. After saving, close HWCONFIG. Refer to Section 8.4.2 for more details.

Step 2

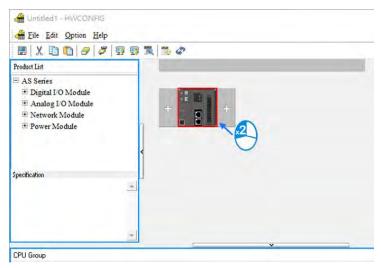

You can see the IP address and the data length from the data mapping table in EIP Builder. The data mapping table can be downloaded and upload the mapped data to the device.

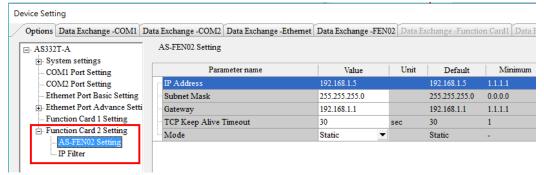
Step 3

An example of using PLC to control the input/output of the IO module remotely:

Start ISPSoft and switch digital output module between 1 and 0 in every 0.5 seconds and shift output values of the analog output module between 10 V and 5V. Wire DI/DO modules to AI/AO modules. Refer to Chapter 2 and 3 in this manual for more details on module operation.

8.6.5 Data Mapping through Modbus TCP (AS-FEN02)

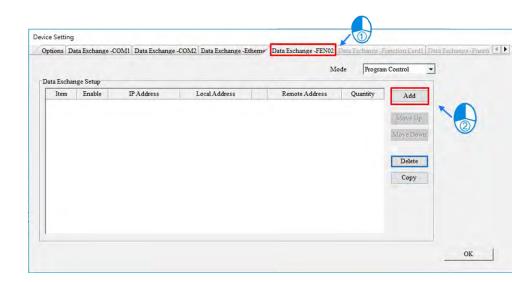

When AS-FEN02 is installed on AS Series PLC, it can be used as the Ethernet port of the CPU.

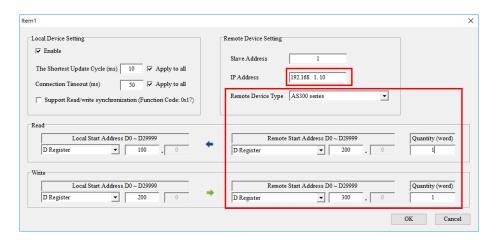

Device	Function	IP Address	Data Mapping Area
AS300 + AS-FEN02	MODBUS TCP Master	192.168.1.5	D100, D200
AS300	MODBUS TCP Slave	192.168.1.10	D200, D300

An example of how to set up AS-FEN02 for reading/writing data registers of the PLC slaves:

Step 1

Double click AS Series PLC in HWCONFIG and the **Device Setting** window appears. Set up the IP Address of the Function Card 2 to 192.168.1.5 and then it can be seen as an Ethernet port of the AS Series PLC.

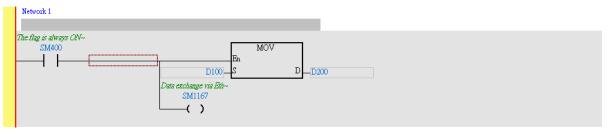




Step 2

Select the Data Exchange-FEN02 tab and edit the table and data mapping can be achieved the same way as using Ethernet port to exchange data. Refer to Section 8.3.1.2 in AS Series Operation Manual for more details.

An example using Slave (AS Series PLC, IP Address: 192.168.1.10) to read data stored in D200 and write the data to Master D100 and write data stored in Master D200 to Slave D300.



Step 3

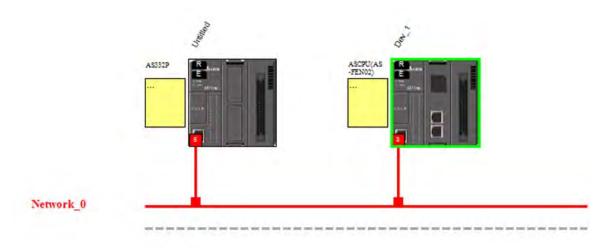
After Master starts to run, check if the data stored in Salve D300 and D200 increment by 1 every second to determine if the data mapping is going well.

Master

Slave

8_

8.6.6 Data Mapping through EtherNet/IP (AS-FEN02)

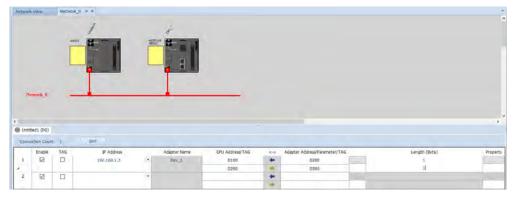

When AS-FEN02 is installed on AS Series PLC, you can create a connection through EIP Builder and make it act as a EtherNet/IP Slave device. Refer to Chapter 9 in AS Series Operation Manual for more details.

An example using two AS Series PLCs to connect each other and treating one as Master and the other as Slave to perform data mapping; Slave uses AS-FEN02 to create an EtherNet/IP connection.

Device	Function	IP Address	Data Mapping Area
AS300	EtherNet/IP Master	192.168.1.5	D100, D200
AS300+ AS-FEN02	EtherNet/IP Slave	192.168.1.3	D200, D300

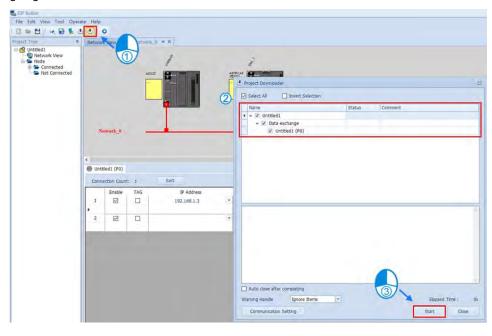
Step 1

Double click AS Series PLC in HWCONFIG and the **Device Setting** window appears. Set up the IP Address of the Function Card 2 to 192.168.1.3 and then connect Master and Slave AS-FEN02. Right-click the CPU to open EIP Builder. Scan the network and then add Slave AS-FEN02 to the same Network as Master's.


Step 2

Right click the Master communication port and select Data Mapping from the menu. Data mapping table appears.

Select the Data Exchange-FEN02 tab and edit the table and data mapping can be achieved the same way as using Ethernet port to exchange data. Refer to Section 8.3.1.2 in AS Series Operation Manual for more details.

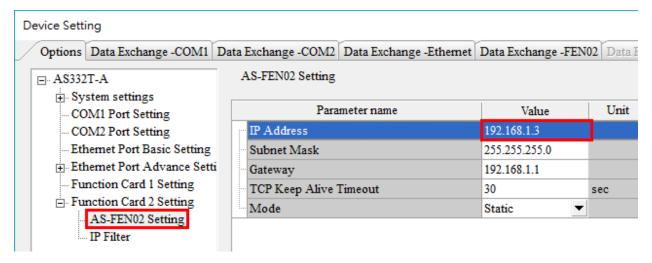

An example of how to set up AS-FEN02 for reading/writing data registers of the PLC slaves:

Select the Data Exchange-FEN02 tab and edit the table and data mapping can be achieved the same way as using Ethernet port to exchange data. Refer to Section 8.3.1.2 in AS Series Operation Manual for more details.

Step 3

Click the **Downloader** icon and then select the parameters that you'd like to download. After Master starts to run, check if the data stored in Salve D300 and D200 increment by 1 every second to determine if the data mapping is going well.

8.6.7 Data Mapping through Modbus TCP (AS-FEN02)


When AS-FEN02 is installed on AS Series PLC, you can create a connection by configuring the IP address and some relevant parameters and make it act as a Modbus TCP Slave device. Refer to AS Series Operation Manual for more details.

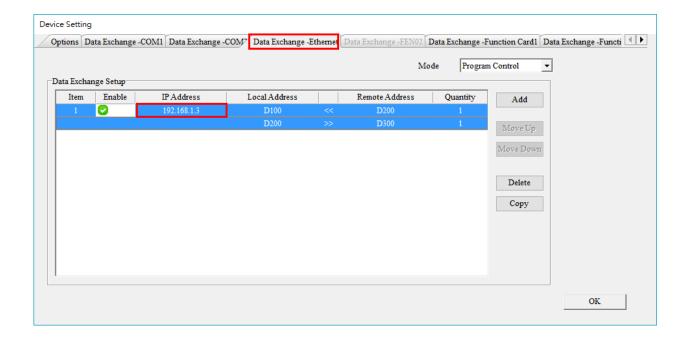
An example using two AS Series PLCs to connect each other and treating one as Master and the other as Slave to perform data mapping; Slave uses AS-FEN02 to create a Modbus TCP connection.

Device	Function	IP Address	Data Mapping Area
AS300	Modbus TCP Master	192.168.1.5	D100, D200
AS300+ AS-FEN02	Modbus TCP Slave	192.168.1.3	D200, D300

Step 1

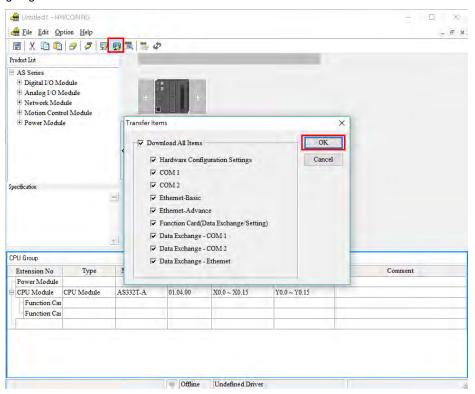
Double click AS Series PLC in HWCONFIG and the **Device Setting** window appears. Set up the IP Address of the Function Card 2 to 192.168.1.3 and then connect Master and Slave AS-FEN02.

Step 2


Right click the Master communication port and select Data Mapping from the menu. Data mapping table appears.

Select the Data Exchange-FEN02 tab and edit the table and data mapping can be achieved the same way as using Ethernet port to exchange data. Refer to Section 8.3.1.2 in AS Series Operation Manual for more details.

An example of how to set up AS-FEN02 for reading/writing data registers of the PLC slaves:


Select the Data Exchange-FEN02 tab and edit the table and data mapping can be achieved the same way as using Ethernet port to exchange data. Refer to Section 8.6.5 in AS Series Operation Manual for more details.

Step 3

Click the **Downloader** icon and then select the parameters that you'd like to download. After Master starts to run, check if the data stored in Salve D300 and D200 increment by 1 every second to determine if the data mapping is going well.

8

8.7 Error Codes

The error flags and the UD Link status codes are stored in data registers. You can modify the input device range as needed.

8.7.1 Troubleshooting for Module ASOOSCM-A as a Communication Module

8.7.1.1 ERROR LED Indicators are ON

The following error codes indicate possible errors when the AS00SCM-A module is installed on the right side of the CPU module and is acting as a communication module.

Error Code	Description	Solution	
16#1605	Hardware failure	 Check that the module is securely installed. Install a new AS00SCM-A or contact the factory. 	
	The function card setting is incorrect.	 Install a new AS00SCM-A or contact the factory. Check if the function card is securely installed. 	
		 Install a new function card or contact the factory. 	
16#1606		Check if the setting in HWCONFIG is consistent with the function card setting.	
		4. Install a new AS00SCM-A or contact the factory.	

8.7.1.2 ERROR LED Indicators Blinking Every 0.5 Seconds

The following error codes identify possible errors when the AS00SCM-A module is installed on the right side of the CPU module and acts as a communication module.

Error Code	Description	Solution
16#1802	Incorrect parameters	Check the parameter in HWCONFIG. Download the parameter again.
16#1803	Communication timeout	 Check whether the communication cable is properly connected. Check if the station number and the communication format are correctly set. Check if the connection with the function card is working correctly.
16#1804	The UD Link setting is incorrect.	 Check the settings of the UD Link. Check the warning settings in the PLC.

The following error codes can only be viewed with SCMSoft; when the following errors occur, they are not shown on the LED indicators and the system does not send the error messages to the CPU module.

Error Code	Description	Solution	
16#0107	The settings in HWCONFIG and manual settings are not consistent with function card 1.	Check the settings in HWCONFIG and manual settings for function card 1.	
16#0108	The settings in HWCONFIG and manual settings are not consistent for function card 2.	Check the settings in HWCONFIG and manual settings for function card 2.	
16#0201	Incorrect parameters	Check the parameter in HWCONFIG. Download the parameter again.	
16#0301	Function card 1 communication timeout	 Check if the station number and the communication format are correctly set. Check if the connection with the function card is working correctly. 	

Error Code	Description	Solution
16#0302	Function card 2 communication timeout	Check if the station number and the communication format are correctly set. Check if the connection with the function card is working correctly.
16#0400	Invalid UD Link Group ID for function card 1	 Check the UD Link settings. Check the warning settings in the PLC.
16#0401	Invalid UD Link Group ID for function card 2	 Check the UD Link settings. Check the warning settings in the PLC.
16#0402	Invalid UD Link Command for function card 1	 Check the UD Link settings. Check the warning settings in the PLC.
16#0403	Invalid UD Link Command for function card 1	 Check the UD Link settings. Check the warning settings in the PLC.

8.7.2 Troubleshooting for Module ASOOSCM-A as a Remote Module

Errors from the remote modules are regarded as warnings for AS Series CPU modules. The LED indicator of the CPU module blinks and the CPU module can still operate. Use flag SM30 to manage error presentation in the remote modules.

8.7.2.1 ERROR LED Indicators Are ON

Error codes:

Error Code	Description	Solution
16#1301	Hardware failure	 Check if the module is securely installed. Change and install a new AS00SCM-A or contact the factory.
16#1302	The function card setting is incorrect.	 Check if the function card is securely installed with the AS-FCOPM card. Change and install a new function card or contact the factory. Check if the setting in HWCONFIG is consistent with the function card setting. Install a new AS00SCM-A or contact the factory.

8.7.2.2 ERROR LED Indicators Blinking Every 0.5 Seconds

Error codes:

Error Code	Description	Solution
16#1502	Incorrect parameters	Check the parameter in HWCONFIG. Download the parameter again.
16#1503	Extension module communication timeout	Make sure the communication cable is well connected and the module is properly connected to the CPU module and turn the modules on again.

8.7.2.3 ERROR LED Indicators Blinking Every 0.2 Seconds

This happens when the 24 VDC power supply for the remote module is not sufficient. Check the power supply. If the power supply is normal, remove the extension module from the CPU module and then check if the SCM remote module is out of order. Error codes:

Error Code	Description	Solution
16#1303	24VDC power supply is not sufficient and then recovered from low-voltage for less than 10 ms.	Check whether the 24 V power supply to the module is normal.

Chapter 9 Function Cards

Table of Contents

9.1 I	ntroduction	9-2
9.2 S	Specification and Function	9-2
9.2.1	AS-F232	9-2
9.2.2	AS-F422	9-2
9.2.3	AS-F485	9-2
9.2.4	AS-F2AD	9-3
9.2.5	AS-F2DA	9-3
9.2.6	AS-FCOPM	9-4
9.2.7	AS-FEN02	9-4
9.3 P	Profiles and Dimensions	9-5
9.3.1	AS-F232	9-5
9.3.2	AS-F422/AS-F485/AS-F2AD/AS-F2DA	9-5
9.3.3	AS-FCOPM	9-5
9.3.4	AS-FEN02	9-6
9.4 V	Viring	9-7
9.4.1	AS-F2AD	9-7
9.4.2	AS-F2DA	9-8
9.5 H	HWCONFIG in ISPSoft	9-8
9.5.1	Initial Setting	9-8

9.1 Introduction

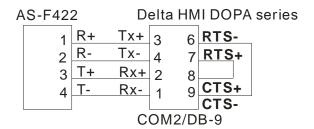
Function cards are extension cards such as analog input/output (Al/AO) and communication cards for the AS Series PLC.

9.2 Specification and Function

9.2.1 AS-F232

The AS Series PLC is built with COM1 (RS-485) and COM2 (RS-485) ports. You can use the AS-F232 extension card for communication other interfaces such as RS-232, PC, and so on. Except for the communication interface, however, the communication functions are the same as the built-in ones. You can set up the communication port as either a slave or a master node. After installing the extension card, use HWCONFIG in ISPSoft to configure the communication.

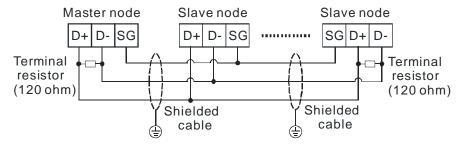
■ Wiring example



DB9 male to DB9 female (standard cable)

9.2.2 AS-F422

Use the AS-F422 extension card to communicate with Delta HMI devices or other devices that use an RS-422 communication port. Other than the different communication interface, the communication functions remain the same as the built-in ones. You can set the communication port as either a slave or a master node. After installing the extension card, use HWCONFIG in ISPSoft to configure the communication.


■ Wiring example for communication with Delta HMI DOPA series via COM2

9.2.3 AS-F485

With its own standalone communication port, the AS-F485 card can work independently and can be either a slave or a master node. After installing the extension card, use HWCONFIG in ISPSoft to configure the communication.

■ Wiring example

a

9.2.4 AS-F2AD

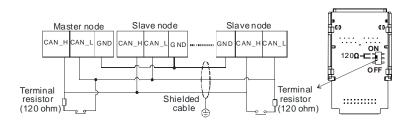
2 analog signal input channels:

Item	Voltage Input		Current Input	
Analog Signal		DC 0 V - 10 V	DC 4 mA - 20 mA	
Resolution		12-bit	11-bit	
Input Impedance		2 ΜΩ	250 Ω	
Conversion Time	3 ms /		/ CH	
Characteristic Curve	Ontage input		2000 A Surrent input	
Digital Value	Card 1 SR168 (CH1)		SR169 (CH2)	
Output	Card 2 SR170 (CH1)		SR171 (CH2)	

Use the program to read the values in SR to obtain the corresponding A/D conversion value for the channel.

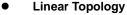
9.2.5 AS-F2DA

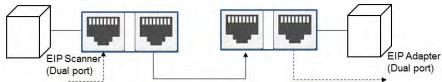
2 analog signal output channels:

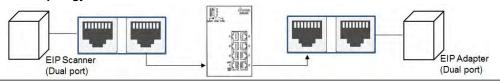

Item	Voltage Output		Current Output
Analog Signal	DC 0 V - 10 V		DC 4 mA - 20 mA
Resolution		12-bit	12-bit
Output Impedance		≥1 kΩ	≤500 Ω
Conversion Time		2ms /	/ CH
Characteristic Curve	10V Voltage Output A000 Di gital Value Input		20mA 4000 Digital Value Input
Digital Value Card 1 SR172 (CH1)		SR172 (CH1)	SR173 (CH2)
Output	Card 2	SR174 (CH1)	SR175 (CH2)

Use the MOV instruction to move the value to the SR to obtain the corresponding voltage output value.

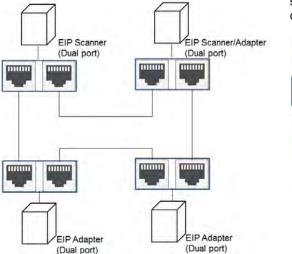
9.2.6 AS-FCOPM


With its own standalone communication port, the AS-FCOPM card can work independently and can be either a slave or a master node. After installing the extension card, use HWCONFIG in ISPSoft to configure the communication.

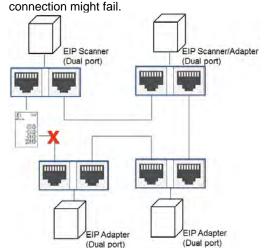

■ Wiring example


9.2.7 AS-FEN02

With its own standalone communication port, the AS-FEN02 card can work independently and can be MODBUS TCP Server, Client and EtherNet/IP Adapter. After installing the extension card, use HWCONFIG in ISPSoft to configure the communication.

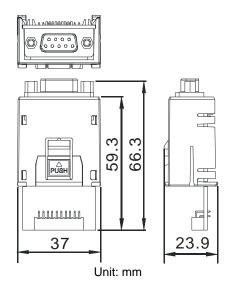


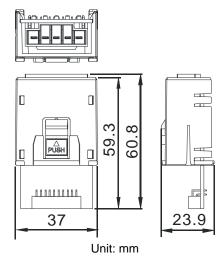
Star Topology



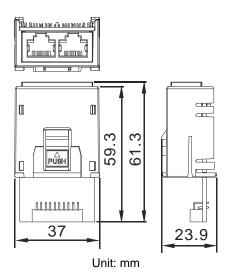
Ring Topology

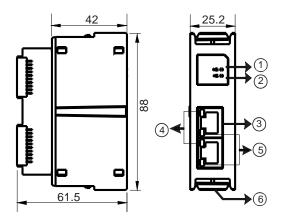
A DLR function is required to create a ring topology.


When a switch is needed for topology, the switch should support the DLR function. If not, the connection might fail


7/

9.3 Profiles and Dimensions

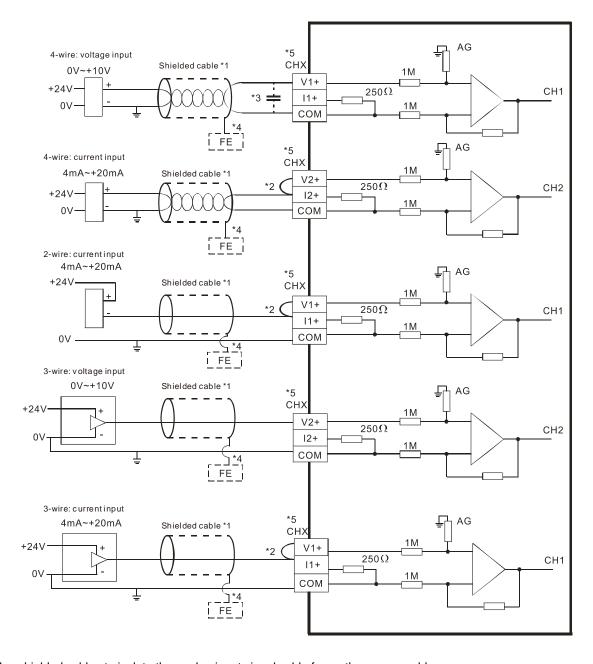

9.3.1 AS-F232


9.3.2 AS-F422/AS-F485/AS-F2AD/AS-F2DA

9.3.3 AS-FCOPM

9.3.4 AS-FEN02

Number	Name	Description
		Indicates if the module has been set
1	MS indicator	ON: the setting is complete
'	We maicator	Blinking: the setting is not complete
		OFF: no power
		Indicates the status of Ethernet connection
		Green lignt ON: a CIP connection is established
		Green lignt BLINKING: a CIP connection is not established
2	NS indicator	Red light ON: duplicated IP address
		Red light BLINKING: communication timeout / DLR conection
		lost / IP address change
		OFF: no power / network cable is not connected
3	RJ-45 port X1/X2	Use for network connections
		Indicate the status of Ethernet connection
4	LINK indicator X1/X2	Green light ON: a network connection is established
		OFF: a network connection is not established
		Indicate the status of Ethernet communication
5	ACT indicator X1/X2	Orange BLINKING: data transmission
		OFF: no data transmission
6	Clip ring	Secures AS series


RJ-45 Pin Definition

Pin No.	RJ-45	
1	TX+	
2	TX-	
3	RX+	
4	N/C	
5	N/C	8-1
6	RX-	
7	N/C	
8	N/C	

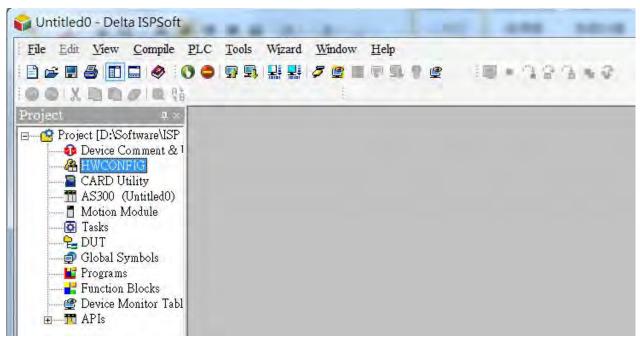
9

9.4 Wiring

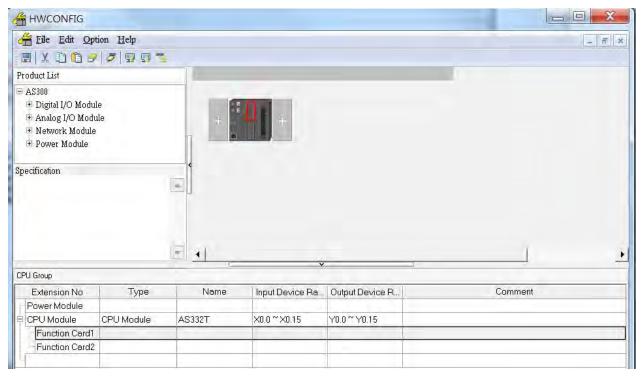
9.4.1 AS-F2AD

- * 1. Use shielded cables to isolate the analog input signal cable from other power cables.
- *2. If the module is connected to a current signal, the terminals Vn and In+ (n=1-2) must be short-circuited.
- *3. If variability in the input voltage results in interference within the wiring, connect the module to a capacitor having a capacitance in the range of 0.1–0.47 µF and a working voltage of 25 V.
- *4. Connect the shielded cable to the terminal FE.
- *5. The wording "CHX" indicates that you can use the five wiring methods listed above for every input channel.

9.4.2 AS-F2DA

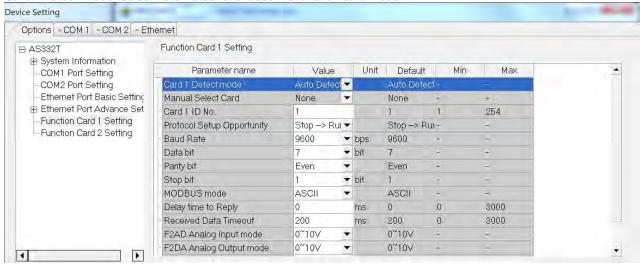


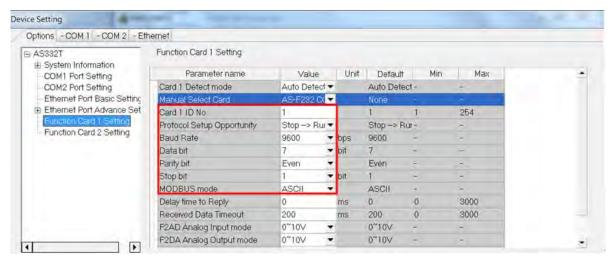
- *1. Use shielded cables to isolate the analog input signal cable from other power cables.
- *2. If variability in the input voltage results in interference within the wiring, connect the module to a capacitor having a capacitance in the range of $0.1-0.47 \mu F$ and a working voltage of 25 V.
- *3. Connect the shielded cable to the terminal FE.
- *4. The wording "CHX" indicates that you can use the two wiring methods listed above for every input channel.


9.5 HWCONFIG in ISPSoft

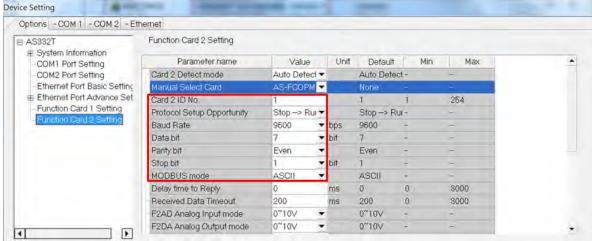
9.5.1 Initial Setting

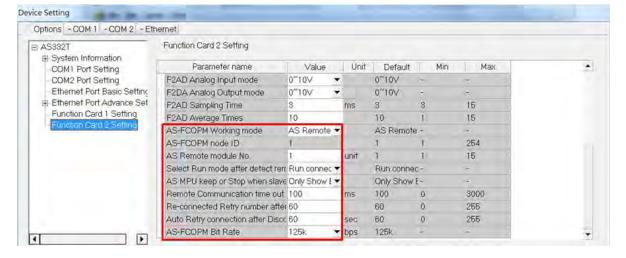
(1) Start ISPSoft and double-click HWCONFIG.

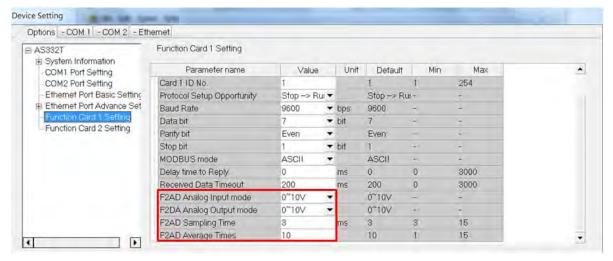


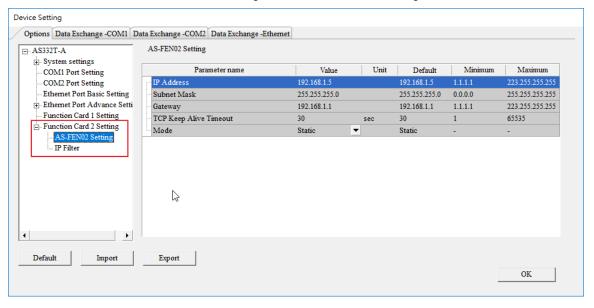


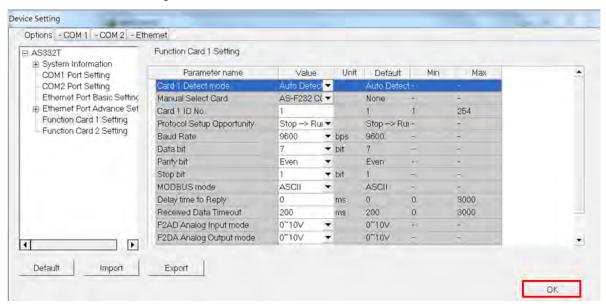
(3) Double-click the function card to open the Device Setting page.

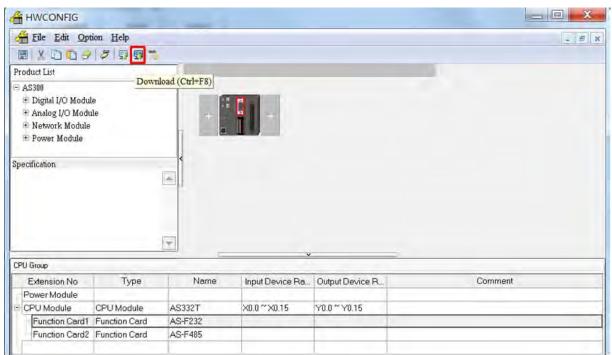

Card1 Detect mode: select Auto Detect or choose the function card model.


(a) When the function card is an AS-F232, AS-F422, or AS-F485, configure the communication settings in the red box.


(b) Function card AS-FCOM can only be installed in function card slot 2.


(c) Configure the communication settings in the red box.




(e) When the function card is an AS-FEN02, configure the communication settings in the red box.

(f) Click **OK** to confirm the settings.

(4) Click **Download** on the toolbar to download the parameters. Note that you cannot download the parameters while the CPU module is running.

Chapter 10 DeviceNet Master Scanner Module AS01DNET-A

Table of contents

10-3
10-3
10-4
10-4
10-4
10-5
10-5
10-6
10-6
10-6
10-7
10-7
10-7
10-11
10-12
10-13
10-13
10-13
10-14
10-14
10-14
10-15
10-15 10-15
10-15
10-15 10-16
10-15 10-16 10-17
10-15 10-16 10-17 10-17
10-15 10-16 10-17 10-17 10-18 10-18
10-15 10-16 10-17 10-18 10-18 10-18
10-15 10-16 10-17 10-17 10-18 10-18

	10.4.7	7.2.Using DeviceNet Builder to Configure a DeviceNet Network	10-21
	10.4.7	7.3.DeviceNet Network Control	10-28
	10.4.8	Sending Explicit Message through Ladder Diagram	10-29
	10.4.8	3.1.Principle of Explicit Message Transmission	10-29
	10.4.8	3.2.Explicit Message Transmission Instruction DNETRW	10-30
	10.4.9	LED Indicators and Troubleshooting	10-36
	10.4.9	P.1.NS LED	10-36
	10.4.9	P.2.MS LED	10-36
	10.4.9	P.3.Combination of MS LED and NS LED	10-37
	10.4.9	P.4.Digital Displayer	10-37
	10.4.10	Master-Slave Mode Switch and 8 Baud Rates Setting via Software	10-39
	10.4.1	0.1.Setting AS01DNET-A to Slave Mode	10-39
	10.4.1	0.2.Setting AS01DNET-A to Master Mode	10-42
	10.4.1	0.3. Baud Rate Setting of When AS01DNET-A is in Slave Mode	10-45
	10.4.1	0.4.Baud Rate Setting of When AS01DNET-A is in Master Mode	10-48
10	.5 RTL	J Mode	. 10-50
	10.5.1	Introduction of AS01DNET (in RTU Mode)	10-50
	10.5.2	AS-Series Extension Modules Connectable to ASO1DNET (RTU)	10-51
	10.5.3	Installation	10-52
	10.5.3	3.1.Installing AS01DNET (in RTU Mode)	10-52
	10.5.3	3.2.Connecting the Cable to DeviceNet Connector	10-53
	10.5.4	Configuring ASO1DNET (in RTU mode)	10-54
	10.5.4	l.1.Terms	10-54
	10.5.4	1.2.Introduction of Software	10-55
	10.5.4	I.3.DeviceNet Mapping Data	10-73
	10.5.4	I.4.Connecting AS01DNET (RTU) to the Network	10-81
	10.5.5	Application Example	10-82
	10.5.5	5.1.Network Structure	10-82
	10.5.5	5.2.Using DeviceNet Builder to Configure the Network	10-82
	10.5.5	5.3. Using LD Program to Control the Entire Network	10-91
	10.5.6	Error Diagnosis and Trouble Shooting	10-91
	10.5.6	o.1.Indicator Diagnosis	10-91
	10.5.6	o.2.Codes in Seven-Segment Displayer	10-92
	10.5.6	o.3.Status Word Diagnosis	10-94
	10.5.6	o.4.Software Diagnosis	10-95

10.6 How to Call DeviceNet Builder through ISPSoft (AS-Series PLC) \dots 10-96

10.1 Introduction of ASO1DNET-A

- Thank you for choosing Delta AS01DNET-A. Please read this chapter carefully before use so as to ensure correct installation and operation of AS01DNET-A.
- The instruction is simply a guideline for operation of the product and the details on the DeviceNet protocol is excluded here. Please refer to relevant articles and literatures for more details on the DeviceNet protocol.
- AS01DNET-A, a DeviceNet network module can work in two modes: master /slave and RTU. The
 RTU-Master/Slave switch is used for selecting one of the two modes. When AS01DNET-A works in master/slave
 mode, it makes up the DeviceNet master or slave with AS-series PLC together. When working in RTU mode,
 AS01DNET-A needs an external 24VDC power supply and can connect AS-series I/O modules onits right side.
 Refer to section 10.4 and 10.5 for details about master/slave mode and RTU mode.

10.1.1 Feature

- Supports the Group 2 server slave and Group 2 only servers.
- Supports the explicit connection in the predefined master/slave connection and I/O polling connection.
- Able to work as a DeviceNet master or slave as well as a remote RTU connecting AS series I/O modules.
- The network configuration software DeviceNet Builder offers the graphical configuration interface.
- Supports the EDS file configuration in the DeviceNet network configruation tool.

10.1.2 Specifications

DeviceNet Connector

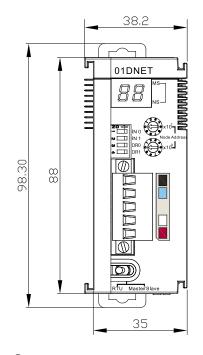
Item	Specifications
Transmission method	CAN
Electrical isolation	DC500V
Connector type	Removable terminal block with screws (5.08mm)
Communication cable	2 communication wires, 2 power wires and 1 shielded wire included.

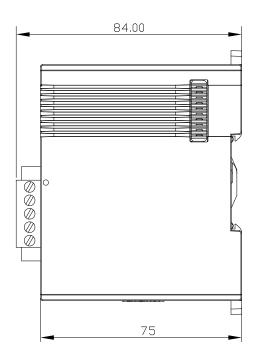
DeviceNet Communication

Item	Specifications	
Message type	I/O polling connection, explicit connection	
	Standard: 125 kbps, 250 kbps and 500 kbps	
Baud rate	Extension: 10 kbps, 20 kbps, 50 kbps, 125 kbps, 250 kbps, 500 kbps, 800kbps	
	and 1M bps.	

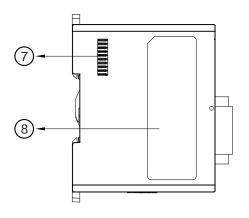
Electrical Specification

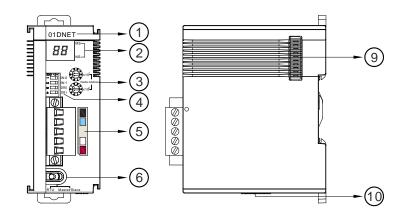
Item	Specifications	
Voltage	The power wires of the communication cable provide 11 ~ 25 VDC.	
Current	28mA (typical value), 125mA impulse current (24 VDC)	


Environment


Item	Specifications
------	----------------

Noise immunity	ESD (IEC 61131-2, IEC 61000-4-2): 8KV Air Discharge EFT (IEC 61131-2, IEC 61000-4-4): Power Line: 2KV, Digital I/O: 1KV Analog & Communication I/O: 1KV Damped-Oscillatory Wave: Power Line: 1KV, Digital I/O: 1KV RS (IEC 61131-2, IEC 61000-4-3): 26MHz ~ 1GHz, 10V/m
Operating Environment	-20°C ~ 60°C (Temperature); 5 ~ 95% (Humidity), no condensation; pollution degree: 2
Storage Environment	-40°C ~ 80°C (Temperature); 5~95% (Humidity), no condensation
Vibration/Shock resistance	International standard IEC 61131-2, IEC 68-2-6 (TEST Fc)/IEC 61131-2 & IEC 68-2-27 (TEST Ea)
Safety	Conforms to IEC 61131-2, UL508


10.2 Components of AS01DNET-A


10.2.1 Profile and Dimensions

10.2.2 Components

1	Model name	6	Mode toggle (RTU-Master/Slave)
2	State indicators	7	Left-side extension port
3	Address switch	8	Nameplate
4	Function switch	9	Right-side extension port
(5)	DeviceNet communication port	10	24V DC power input port for RTU mode

Note:

The power input port of the network module is required to connect an external 24VDC power supply only when the toggle (RTU- Master/Slave) is switched to RTU mode. Otherwise, the port does not need an external 24VDC power supply connected when the toggle (RTU- Master/Slave) is switched to Master/Slave mode.

10.2.3 Mode Toggle (RTU- Master/Slave)

Mode Selection	Description	
Master/Slave	Works in master or slave mode and constitutes a DeviceNet master or slave without external power supply.	
RTU	When working in remote (RTU) mode, AS01DNET-A is required to connect the external DC 24V power supply and can have AS series I/O modules connected on its right side.	RTU Master/Slave

10.2.4 DeviceNet Connector

The connector is used for the connection to DeviceNet. Wire by using the connector enclosed with AS01DNET –A.

Pin	Signal	Color	Description	
1	V-	Black	0 VDC	
2	CAN_L	Blue	Signal-	
3	SHIELD	-	Shielded wire	
4	CAN_H	White	Signal+	
5	V+	Red	24 VDC	

10.2.5 Address Switch

The switch is used for setting up the node address of AS01DNET-A in DeviceNet network. Range: 00~63 (64~99 are forbidden.)

Switch setting	Description	2 3 F X 10 1 7
0 63	Valid DeviceNet node address	Node Address
6499	Invalid DeviceNet node address	0 x10°J

Example:

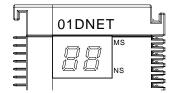
If users need to set the node address of AS01DNET-A to 26, simply switch the corresponding switch of $x10^1$ to 2 and the corresponding switch of $x10^0$ to 6.

Note:

- ✓ After the setup is completed, repower AS01DNET-A.
- ✓ While AS01DNET-A is working, changing the setting of the node address is invalid.
- ✓ Rotate the switch carefully with a slotted screwdriver to prevent damage to the switch.

10.2.6 Function Switch

- The function switches are used for:
 - Setting up the work mode (IN0)
 - Setting up the baud rate of DeviceNet network (DR0~DR1)

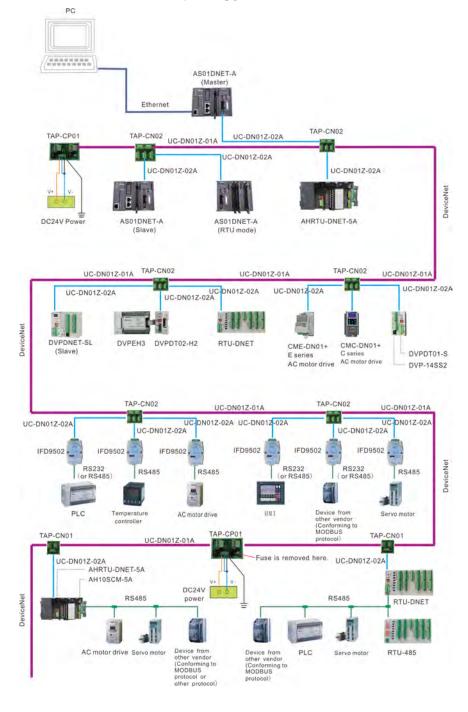

DR1	DR0	Baud Rate	
OFF	OFF	125 Kbps	
OFF	ON	250 Kbps	 ZO <
ON	OFF	500 Kbps	
ON	ON	Entering the mode of extended baud rate	N
INIO	ON	When the slave is off-line, the I/O data in the buffer area will be held.	ω □□□ DR0 ♣ □□□ DR1
IN0	OFF	When the slave is off-line, the I/O data in the buffer area will be cleared.	
IN1	Reserved	1	

Note:

- ✓ After the setup of the function switch is completed during power off, repower AS01DNET-A.
- ✓ While AS01DNET-A is working, changing the setting of the node address is invalid.
- ✓ Adjust the DIP switch carefully with a slotted screwdriver to prevent any damage to the switch.

10.2.7 Digital Displayer

- The digital displayer provides following functions:
 - Showing the node address of AS01DNET-A and error ID
 - Showing the error information about a slave


10.3 DeviceNet Network Communication

10.3.1 Relationship between Transmission Distance and Baud Rate

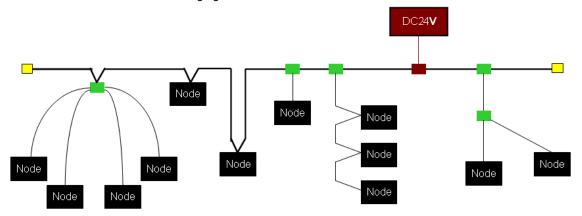
The transmission distance of a DeivceNet network is determined by the baud rate. The following table shows the corresponding maximum communication distance at different baud rates.

Baud rate (bits/s)	10K	20K	50K	125K	250K	500K	800K	1M
Max. transmission distance (M)	5000	2500	1000	500	250	100	50	25

10.3.2 DeivceNet Network Topology Structure

List of Delta DeviceNet Fieldbus Network Products:

Product picture	Model	Function
BIONET S. S.	AS01DNET-A	 AS01DNET-A, a DeviceNet module running on the right of AS PLC can work as a DeviceNet master or slave. AS01DNET-A can also be used as AS series remote IO module for connecting AS series DI/DO modules and AI/AO modules to DeviceNet network.
10CNET	AH10DNET-5A	AH10DNET-5A, a DeviceNet module, running on the right of AH500 series PLC can work as a DeviceNet master or slave.
RTU-DNET	AHRTU-DNET-5A	AHRTU-DNET-5A, a remote I/O module of AH series, is used for connecting AH500 series DI/DO module, AI/AO module and 10SCM module to DeviceNet network.
OVPORT T	DVPDNET-SL	DVPDNET-SL, a DeviceNet module, running on the left of S series PLC can work as a DeviceNet master or slave.
RTU-ONET CONTROL ON STATE OF S	RTU-DNET	RTU-DNET, a remote I/O module of S series, is used for connecting S-series DI/DO module, AI/AO module and other device to DeviceNet network.


Product picture	Model	Function
THE COST OF THE COST OS OF THE COST OS OF THE COST OF	IFD9502	Used for connection of the DeviceNet network and electromechanical equipment such as AC motor drive, PLC, temperature controller, servo drive, HMI, user-defined device.
	IFD6503	A fieldbus data analysis tool, with one end: CAN interface and the other end: USB interface can be used for getting the CAN data or sending the data to the CAN node. It is used with the Netview Builder software together.
	E-series AC motor drive	Used for connecting AC motor drive to DeviceNet network via CME-DN01 card.
	CMC-DN01	Used for connecting C2000 series AC motor drive to the DeviceNet network.
	DN-02	Used for the connection of DeviceNet network and AC motor drive.
Diff. DTO:	DVPDT01-S	Used for the connection of DeviceNet network and S series PLC.

Product picture	Model	Function
DY 02	DVPDT02-H2	Used for the connection of DeviceNet network and DVP-EH2 series PLC.
	TAP-CP01	The distribution box for CAN topology, with the 120 ohm resistor enclosed which is controlled to take effect or not via its switch.
	TAP-CN01	The distribution box for CAN topology, with the 120 ohm resistor enclosed which is controlled to take effect or not via its switch.
	TAP-CN02	The distribution box for CAN topology, with the 120 ohm resistor enclosed which is controlled to take effect or not via its switch.
	UC-DN01Z-01A	UC-DN01Z-01A: DeviceNet trunk cable.
	UC-DN01Z-02A	UC-DN01Z-02A: DeviceNet branch cable.

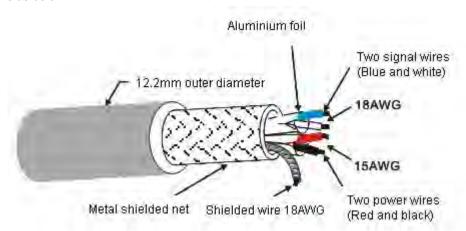
10.3.3 Choice and Purpose of a DeviceNet Terminal Resistor

Choice of a DeviceNet Terminal Resistor

A DeviceNet network requires two terminal resistors of 121 Ω connected at both ends of the trunk cable respectively. The thick cable represents the trunk cable, the thin cable represents the branch cable and the yellow boxes at the two ends are terminal resistors in the following figure.

Purpose of a DeviceNet Terminal Resistor

The terminal resistor is used for eliminating the signal reflection in the communication cable.


All signal transmission cables have the characteristic impedance. The characteristic impedance of Delta DeviceNet communication cable is about 121 Ω .

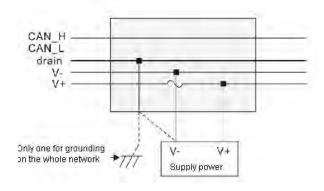
When being transmitted to the end of the communication cable, because the impedance of the end is different from the characteristic impedance, the signal will be reflected, which will interfere with the new signal and the signal wave form distortion will happen.

The phenomenon of the signal wave form distortion is not obvious in the short-distance transmission. But the wave form distortion will become severer in the increasingly long communication cable. Therefore, the two ends of the trunk cable must be installed with the terminal resistors respectively.

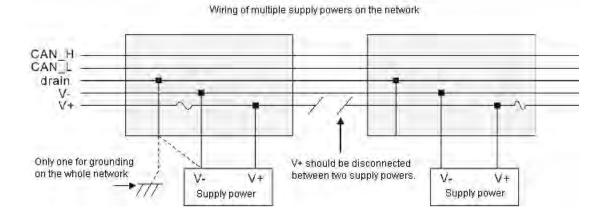
Installation Position of Terminal Resistors

The DeviceNet communication cable consists of five wires such as red wire, blue wire, white wire, black wire and shielded wire as below.

The terminal resistors must be installed to the two ends of the trunk cable only. Since the blue wire and white wire are for signal transmission, both of the terminal resistors must be installed between blue wire and white wire at the two ends of the main cable.


10.3.4 DeviceNet Network Supply Power

The network requires one or multiple supply powers to supply the power to each piece of network equipment via the bus cable.


Delta DeviceNet communication cable consists of five wires, among which the power cable and signal cable occupy two wires respectively and the one on the left is the shielded wire as the above figure shows.

The supply power for the bus is optional and could be a single supply power or multiple supply powers according to the actual demand.

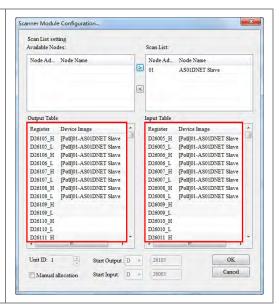
Single Supply Power

Multiple Supply Powers

10.4 Master / Slave Mode

10.4.1 Introduction of Master/Slave Mode

AS01DNET-A can work as a DeviceNet master as well as slave with at most 4 AS01DNET modules connectable to the right side of AS PLC. Running on the right of AS-series PLC, AS01DNET-A with AS-series PLC together constitutes the DeviceNet master or slave. When working in Master/Slave mode, AS01DNET-A is required to switch the function toggle (RTU- Master/Slave) to Master/Slave mode and the DeviceNet Builder of version 2.04 and above is used for the setup. For details about the setup, refer to section 10.4.10.

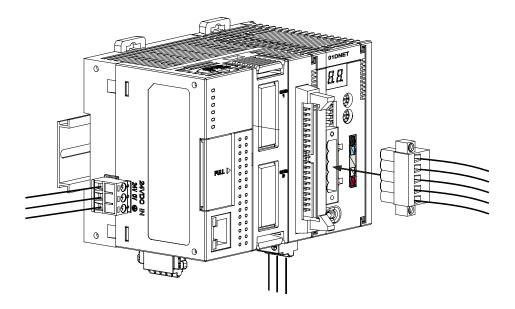

- As a master, AS01DNET-A can provide the following function.
 - Supporting the Client function of Explicit message;
 - Supporting IO polling connection with slaves;
 - The network configuration software DeviceNet Builder provides graphic configuration interface.
 - Sending explicit messages to read and write the data in slave through the explicit message instruction DNETRW.
 - Automatically performing data exchange with the PLC module; users just need write a program for D register in the PLC without using FROM/TO instructions.
 - Offering 190 bytes of output data area and 190 bytes of input data area for exchanging data with the master.
- As a slave, AS01DNET-A can provide the following function.
 - Explicit message Server and Group 2 only server connection mode;
 - Polling connection;
 - Offering 200 bytes of input data area and 200 bytes of output data area for exchanging data with master;
 - Automatically exchanging data with the PLC. The user just need to write a program for D register in the PLC without using FROM/TO instruction.

10.4.1.1. Scan List, Input Table and Output Table

Item	Description	Figure
Scan List	Before AS01DNET-A module works, the scan list must be configured through the configuration software. The scan list stores slave information including node address, I/O type, I/O size and etc. for data exchange. The scanner module manages the slaves in the scan list, makes a connection with slaves and exchange I/O data with them. For those slaves which have not been configured to the scan list, AS01DNET-A will not make a connection and I/O data exchange with them.	Scan List setting Available Nodes: Node Ad Node Name Output Table Register Doi105 H [Poll]01-AS0IDNET Slave Doi106 L [Poll]01-AS0IDNET Slave Doi106 L [Poll]01-AS0IDNET Slave Doi106 L [Poll]01-AS0IDNET Slave Doi107 L [Poll]01-AS0IDNET Slave Doi108 H [Poll]01-AS0IDNET Slave Doi108 L [Poll]01-AS0IDNET Slave Doi109 L [Poll]01-AS0IDNET Slave Doi100 L [Poll]01-

Input/output Table The scanner module provides an input table of total size: 190 bytes and an output table of total size: 190 bytes for data exchange with slaves. When one slave is configured to the scan list, the configuration software will automatically assign corresponding size of I/O data exchange area to the slave. Input Table and Output Table are the interface for data exchange between the PLC of the master and slaves and show the mapping relationships between the D registers in the PLC of the master and the I/O data of slaves.

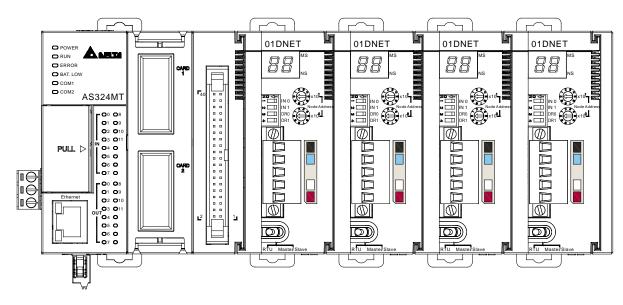
After the configuration is finished, download the configuration data to the scanner module. Then the module will exchange I/O data with corresponding slaves according to the configuration. The data in the output table will be transmitted to slaves and the data returned from slaves will be filled in the input table.


10.4.2 Installation

10.4.2.1. Connecting ASO1DNET-A Module to AS series PLC

For the details on how AS01DNET-A (in Master/slave mode) is connected to AS series PLC, refer to Section 1.3.1 Installing a Module in AS Series Module Manual.

10.4.2.2. Connecting the DeviceNet Communication Connector


- Make sure that the color marks for the PINs of the DeviceNet connection port match the colors of the connection cables and the cable should be connected to the right PIN.
- Delta's power module is recommended as the power module in the communication.

10.4.3 IO Mapping for AS01DNET in AS PLC

10.4.3.1. Data Mapping between Modules and AS PLC

Up to four AS01DENT modules can be connected to the right side of AS PLC at most. After AS01DNET modules and PLC are connected, PLC will assign data mapping areas to each module.

AS01DNET modules are connected to the right of the PLC. The position of the first module on the right of AS PLC is 1, the second module is 2, the third module is 3 and the fourth module is 4. The position is only defined for network modules such as AS01DNET and AS00SCM, instead of digital modules, analog modules, temperature modules, and weight-measurement modules. The positions of AS01DNET modules on the right of the PLC are shown in the following table where there are two arrangement ways of module connections.

Exa	ample 1	Example 2		
Position of AS01DNET on the right of the PLC	Arrangement order of AS PLC and modules on the right of the PLC	Position of AS01DNET on the right of the PLC	Arrangement order of AS PLC and modules on the right of the PLC	
	AS PLC		AS PLC	
1	AS01DNET	1	AS01DNET	
	AS04AD		AS04AD	
2	AS01DNET		AS00SCM	
		3	AS01DNET	

When AS01DNET is at different positions of the right of the PLC, the input and output mapping areas for the AS01DNET module in AS PLC are listed in the following table.

Position of AS01DNET on the right of the PLC	Output mapping area	Input mapping area
1	D26100 - D26199	D26000 – D26099
2	D26500 – D26599	D26400 – D26499
3	D26900 – D26999	D26800 – D26899

Position of AS01DNET on the right of the PLC	Output mapping area	Input mapping area
4	D27300 - D27399	D27200 – D27299

10.4.3.2. Tables of Input Mapping and Output Mapping areas

When AS01DNET works in master mode, the input and output mapping areas for AS01DNET at different
positions of the right of AS PLC are listed in the following table.

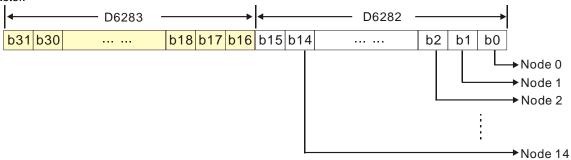
Position of AS01DNET	Output mapping are	a (for sending data	a to the	Input mapping area (for receiving data from the slave)			
on the right of the PLC	D register	Mapping area	Data size	D register	Mapping area	Data size	
	D26100~D26103	Bit-strobe command area	4 words	D26000~D26003	Scan-list node status indication area	4 words	
1	D26104	Reserved	1word	D26004	Module status indication area	1 word	
	D26105~D26199	DeviceNet output data area	95 words	D26005~D26099	DeviceNet input data area	95 words	
	D26500~D26503	Bit-strobe command area	4 words	D26400~D26403	Scan-list node status indication area	4 words	
2	D26504	Reserved	1word	D26404	Module status indication area	1 word	
	D26505~D26599	DeviceNet output data area	95 words	D26405~D26499	DeviceNet input data area	95 words	
	D26900~D26903	Bit-strobe command area	4 words	D26800~D26803	Scan-list node status indication area	4 words	
3	D26904	Reserved	1word	D26804	Module status indication area	1 word	
	D26905~D26999	DeviceNet output data area	95 words	D26805~D26899	DeviceNet input data area	95 words	
	D27300~D27303	Bit-strobe command area	4 words	D27200~D27203	Scan-list node status indication area	4 words	
4	D27304	Reserved	1word	D27204	Module status indication area	1 word	
	D27305~D27399	DeviceNet output data area	95 words	D27205~D27299	DeviceNet input data area	95 words	

Note: See section 10.4.5 for further explanation of scan-list node status indication areas and module status indication areas. The input and output mentioned here are defined in the perspective of the master of the entire fieldbus system.

When AS01DNET works in slave mode, the input and output mapping areas for AS01DNET at different positions
of the right of AS PLC are listed in the following table.

Position of AS01DNET on	Area for sending da	ata to the master	Area for receiving data	a from the master	
the right of the PLC	D register	Data length	D register	Data length	
1	D26100~D26199 100 words		D26000~D26099	100 words	
2	D26500 - D26599	100 words	D26400 - D26499	100 words	
3	D26900 - D26999	100 words	D26800 - D26899	100 words	
4	D27300 – D27399	100 words	D27200 – D27299	100 words	

10.4.4 Bit-strobe Command


10.4.4.1. Bit-strobe Work Principle

Bit strobe is one of the standard DeviceNet I/O transmission methods. The command length is fixed to 8 bytes, i.e. 64 bits. (Maximum 64 stations exist in a DeviceNet network.) One bit corresponds to one node. The following table takes the first AS01DNET on the right of AS PLC for example.

Bit-strobe	Corresponding network node						
register	b15	b14	b13		b1	b0	
D26100	Node 15	Node 14	Node 13		Node 1	Node 0	
D26101	Node 31	Node 30	Node 29		Node 17	Node 16	
D26102	Node 47	Node 46	Node 45		Node 33	Node 32	
D26103	Node 63	Node 62	Node 61		Node 49	Node 48	

When the value of bit0 of D26100 is 0, node 0 is selected and need return data to the master.

When the values of bit0 and bit1 of D26100 are both 0, node 0 and node 1 are selected and they need return data to the master.

In the bit-strobe method, the master does not send control data to the slave node. However, the slave node need return I/O data to the master if the corresponding bit is set to 0. If the corresponding bit is set to 1, the slave node does not need to return I/O data to the master.

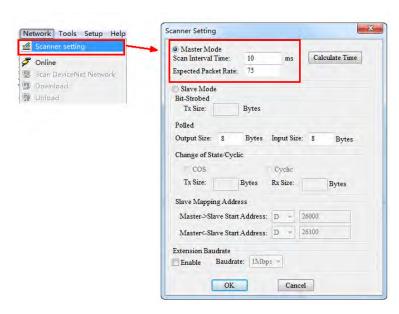
10.4.5 Network Node Status Display

10.4.5.1. Scan-List Node Status Indication

The following table takes the first AS01DNET on the right of AS PLC for example. AS01DNET master can monitor whether the configured slave is online or not in real time and have the status of the configured slave mapped to one bit. Users can get the status of network nodes by monitoring the contents in D26000~D26003. The corresponding relationships between devices in the PLC and network nodes are shown in the following table. If the node in Scan List is normal, the corresponding bit is OFF. If the node in Scan List is abnormal, the corresponding bit is ON.

Register in	n Corresponding network node											
the PLC	b15	b14	b13		b1	b0						
D26000	Node15	Node 14	Node 13		Node 1	Node 0						
D26001	Node 31	Node 30	Node 29		Node 17	Node 16						
D26002	Node 47	Node 46	Node 45		Node 33	Node 32						
D26003	Node 63	Node 62	Node 61		Node 49	Node 48						

10.4.5.2. Module Status Indication

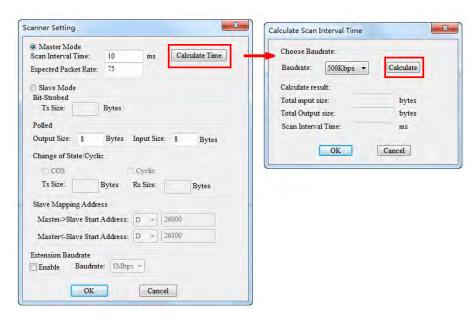

The following table takes the first AS01DNET on the right of AS PLC for example. Users can get the status of the network node by monitoring the content in D26004. When the module works normally, the content in D26004 is 0. When the module is initializing, the content in the high byte of D26004 is 1 and the content in the low byte is 0. When an error occurs in the module, the content in the high byte of D26004 is 2 and the content in the low byte is an error code. For details on error codes, see section 10.9.5 Digital Displayer.

Register in	Description																
the PLC	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	
D26004		Module status (0 : Normal , 1 : Initializing , 2 : error)								Error code in the module							

10.4.6 Setting the Time for Data Exchange between Master and Slaves

When AS01DNET works in master mode, the period of time for a data exchange between master and all slaves need be set. Master and all salves will periodically perform the data exchange based on the set time. See the following explanation for details.

Click menu **Network** >> **Scanner Setting** on the DeviceNet Builder software page. The **Scanner Setting** window appears as below.


The explanation of Scan Interval Time and Expected Packet Rate is shown in the following table.

Scan Interval Time	The period of time needed for a data exchange between master and all slaves. Master and all salves will periodically exchange data based on the set interval time.
Expected Packet Rate (EPR)	Sets the timeout time for connection of master and slaves. The calculation method: 4 X EPR with the unit: ms. The default EPR is 75. The EPR for the connection of master and slaves is 4 X 75 = 300ms. The value indicates that the IO data exchange should be achieved once at least within 300 ms. Otherwise, the connection will fail due to communication timeout and then the connection will have to be re-made so that the IO data exchange can proceed.

Since most DeviceNet slaves only support polled IO data exchange, the EPR value is related to the value of **Scan Interval Time**. Make sure that the actual setting must meet the following condition.

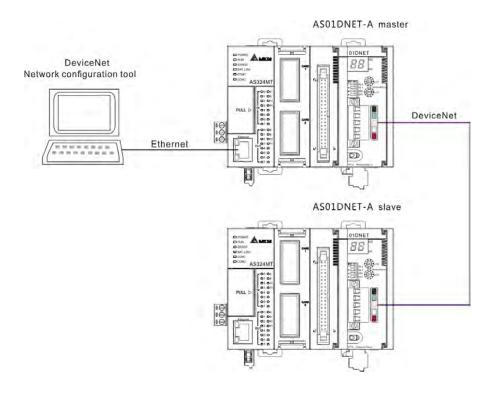
We suggest users refer to the following condition while setting the value of Scan Interval Time.

Click the Calculate Time button. The Calculate Scan Interval Time dialog box comes out. Clicking the Calculate button, the values of Total input size, Total output size and Scan Interval Time are calculated. The value of Scan Interval Time is a value in theory. We suggest users should set the scan interval time to a value slightly greater than the actually calculated time. The scan interval time calculated here will not be filled in the Scan Interval Time box automatically and so users need enter the value manually.

10.4.7 Application Example

To explain how to configure a DeviceNet network through an application example

Control requirement: AS PLC remotely monitors D26105~D26108 and D26005~D26008 in AS module through DeviceNet network to achieve the data exchange as AS01DNET-A works as master and slave respectively.


10.4.7.1. Constructing One DeviceNet Network

This section describes how to construct a DeviceNet network configuration through an application example. Before constructing a DeviceNet network, users should understand the control requirement of the network; plan the data for exchange in advance such as maximum communication distance, slaves, total data length for exchange as well as the

requreiment for response time during data exchange.

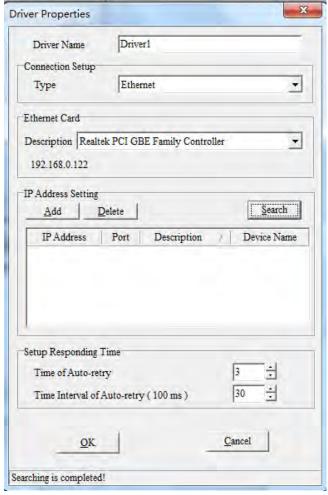
The information above will determine whether the constructed network is reasonable and able to meet the demand. Even it will directly affect the future maintenance and convenience of network capacity expansion and upgrade.

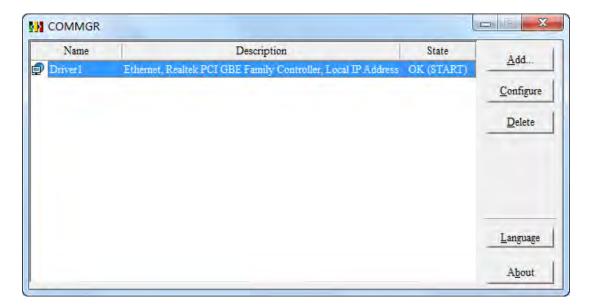
Connection Figure

Note: Both of the ends of the DeviceNet Bus cable must connect one 121Ω terminal resistor respectively. The terminal resistor is connected between CAN_H and CAN_L.

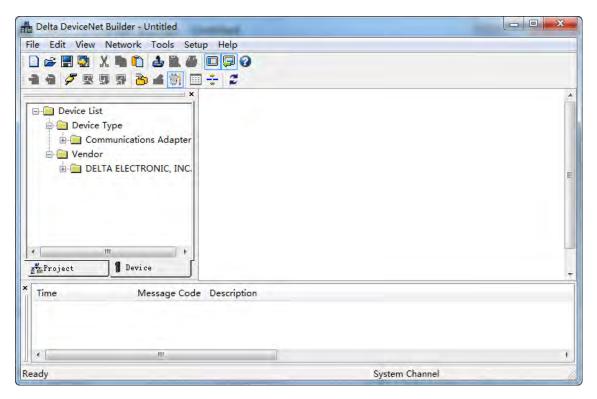
Modules Setting

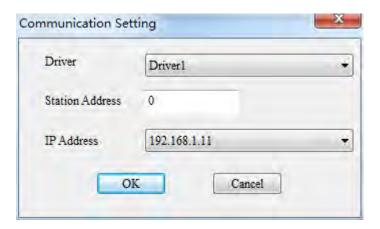

Prepare two AS PLCs and two AS01DNET-A modules for constructing one DeviceNet network. The setups for two AS01DNET-A modules are shown in the following table.

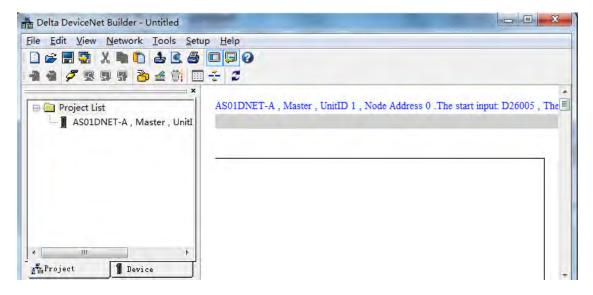

DeviceNet network module	Node address	Baud rate
AS01DNET-A (Master)	0	500kbps
AS01DNET-A (Slave)	1	500kbps

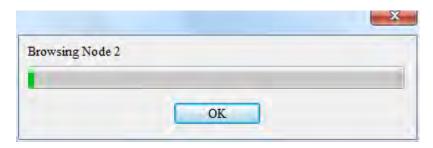

10.4.7.2. Using DeviceNet Builder to Configure a DeviceNet Network

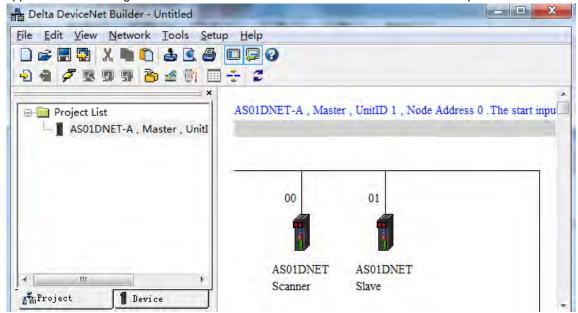
Configuring DeviceNet slave

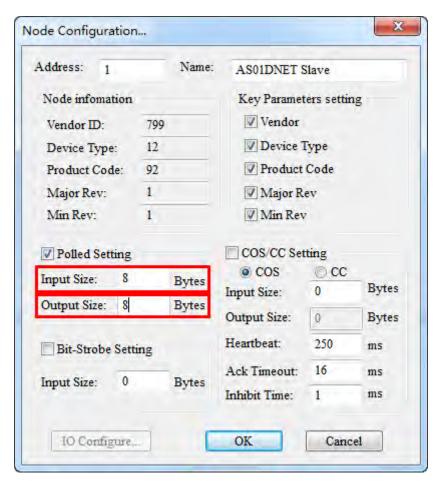

1. Set the driver for the connection of AS PLC and PC. Clicking **Add**, the **Driver Properties** dialog box appears. Select the connection type for AS PLC and PC in the **Type** field. In this example, select Ethernet as the connection type. Click **Search** to search the PLC and then click **OK** after searching is finished.

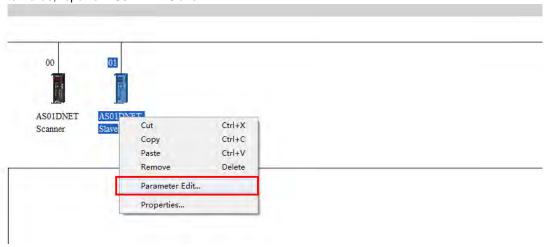


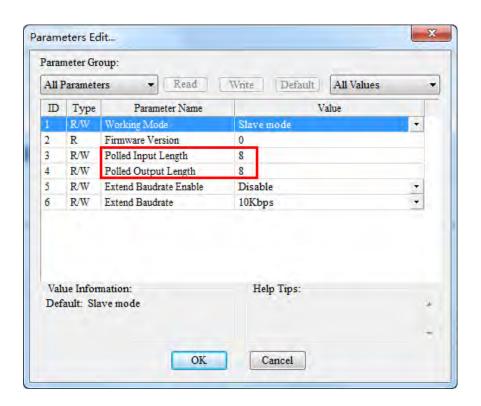

2. Opening the DeviceNet Builder software, the following window appears.


3. Selecting **Setup>> Communication Setting**, the following dialog box appears. Select the driver for connection of AS PLC and PC as below. Click **OK** to finish the selection of Driver.

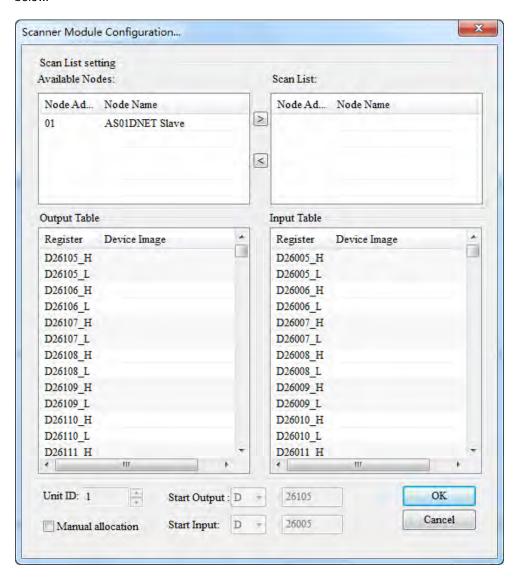

4. Click **Network** >> **Online** to scan the connected master.

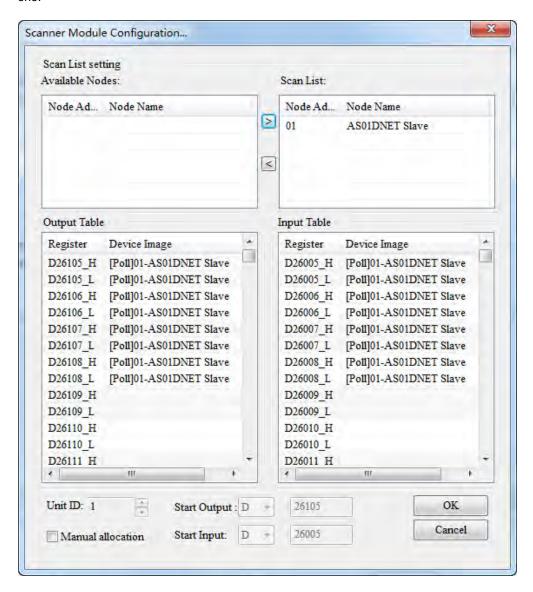

5. Click Network>> Scan DeviceNet Network.


6. After scanning is finished, all node icons and device names which have been scanned in the network will appear on the following interface. The node address of AS01DNET-A is 00 in this example.

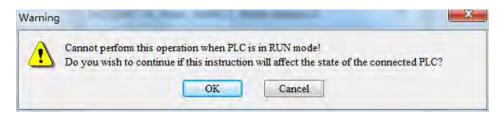


7. Double click the icon of AS01DNET Slave. Then the **Node Configuration...** dialogue box appears. Input Size and Output Size are both set to 8 bytes. Click OK to finish the setting.


8. Right click the icon of AS01DNET Slave and click **Parameter Edit...** on the drop-down menu. The **Parameters Edit...** dialog box appears and **Polled Input Length** and **Polled Output Length** are both set to 8 bytes as shown in the following red box. Then click **Write** button. Click **OK** after writing is finished. Afterwards, repower AS01DNETSlave.



Configuring AS01DNET-A


 Double click the icon of AS01DNET Scanner (node 0). The Scanner Module Configuration... dialog box appears. The left list shows the current available node AS01DNET Slave and the right Scan List is empty as below.

2. Move the DeviceNet slaves from the left list to Scan List of the right side. Follows the steps: Select one DeviceNet slave node and then click. Then the DeviceNet slave nodes are moved to the Scan List one by one

 Click OK to finish the configuration above. Then download the configuration data to AS01DNET-A. During the download, the Warning dialog box will pop out if AS PLC is in RUN mode. Click OK to continue the download.

Configure the DeviceNet network by following the steps above. The IO data mappings between AS01DNET-A and the slave are shown in the following tables.

■ AS01DNET-A → Slave

AS PLC	AS01DNET(Master)	AS01DNET(Slave)	AS PLC
D26105			D26000
D26106			D26001
D26107			D26002
D26108			D26003

■ Slave \rightarrow AS01DNET-A

AS PLC	AS01DNET(Master)	AS01DNET(Slave)	AS PLC
D26005			D26100
D26006			D26101
D26007			D26102
D26008			D26103

Saving configuration data

Select File>> Save to save current network configuration.

10.4.7.3. DeviceNet Network Control

This section describes how to write a ladder program to achieve the control requirement of the DeviceNet network.

PLC Programs

■ The program in the PLC connecting AS01DNET slave:

Program Explanation:

The contents in D26000~D26003 are the data received from the master and the contents in D26100~D26103 are the data transmitted to the master. SM400 is a normally open contact. The program above can make the contents in D26000~D26003 move to D26100~D26103.

■ The program in the PLC connecting AS01DNET master:

Program Explanation:

- 1. When M0 changes to ON, the value 16#5555 is written to D26105~D26108 in AS PLC. The data are transmitted to the slave cyclically via DeviceNet Bus.
- 2. The contents in D26005~D26008 are the data which the master receives from the slave via DeviceNet Bus. When M1 changes to ON, the data in D26005~D26008 are moved to D0, D1, D2 and D3.

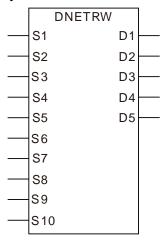
10.4.8 Sending Explicit Message through Ladder Diagram

AS01DNET-A supports the sending of explicit messages via DNETRW instruction.

10.4.8.1. Principle of Explicit Message Transmission

- 1. AS PLC transmits the explicit request message to AS01DNET-A master according to the user program.
- 2. AS01DNET-A transmits the explicit request message to the slave according to the user program.
- 3. The slave sends back the response message to AS01DNET-A master after handling data.
- 4. AS PLC gets back the response message from AS01DNET-A master. Then the explicit message transmission of this time is finished.

10.4.8.2. Explicit Message Transmission Instruction DNETRW


DNETRW instruction:

API		struct		ah			One	erand					Fı	ınction	•	
A11	- "	isti uct	1011 00									Tunction				
1818		DNE.	TRW		S ₁ , S ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					et					
Device	Х	Υ	М	S	Т	С	НС	D	FR	SM	SR	Е	K	16#	"\$"	F
S ₁								•	•				0	0		
S ₂								•	•				0	0		
S ₃								•	•				0	0		
S ₄								•	•				0	0		
S ₅								•	•				0	0		
S ₆								•	•				0	0		
S ₇								•	•				0	0		
S ₈								•								
S ₉								•	•				0	0		
S ₁₀								•	•				0	0		
D ₁		•	•	•												
D ₂		•	•	•												
D ₃								•								
D ₄								•								
D ₅								•								

Data type	воог	WORD	DWORD	LWORD	UINT	N	DINT	LINT	REAL	LREAL	TMR	CNT	STRING
S ₁		•			•	•							
S ₂		•			•	•							
S ₃		•			•	•							
S ₄		•			•	•							
S ₅		•			•	•							
S ₆		•			•	•							
S ₇		•			•	•							
S ₈		•			•	•							
S ₉		•			•	•							
S ₁₀		•			•	•							
D ₁	•												
D ₂	•												
D_3		•			•	•							
D ₄		•			•	•							
D ₅		•			•	•							

Pulse Instruction	16-bit instruction	32-bit instruction
-	AS	AS

Symbol:

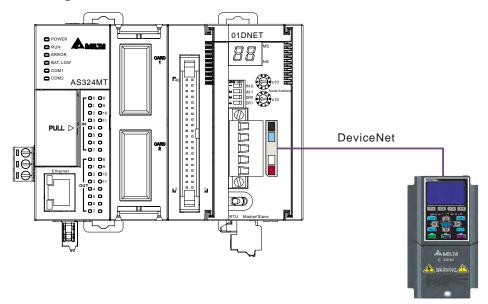
S1	The sequence number of the DeviceNet communication module
S2	DeviceNet node address (MAC ID)
S3	Service Code
S4	Class ID
S5	Instance ID
S6	Attribute ID
S7	Written-data size
S8	The start device where written data are stored
S9	Communication timeout time
S10	Times of re-transmission
D1	Completion flag
D2	Error flag
D3	Error code
D4	Read-data size
D5	The start device where read data are stored

Explanation:

- S1 is the sequence number of the module on the right of the PLC. The number of the first module is 1; the second module is 2 and so on. Any type of module need be numbered within the range of 1~32. If the number is out of the range, the instruction will take the minimum (1) or maximum (32) for operation.
- **S2** is a DeviceNet node address within the range of 0~63. Users can specify the node address of a slave which the master is to read and write. It also can be the node address of the master, which means to read and write the data in the master.
- **S3** is DeviceNet service code:

Service code	Explanation
0x01	Get all attributes (Get_Attribute_All)
0x02	Set all attributes (Set_Attribute_All)
0x0E	Get one single attribute (Get_Attribute_Single)
0x10	Set one single attribute (Set_Attribute_Single)

- S4, S5 and S6 represent Class ID, Instance ID and Attribute ID respectively.
- **S7** is the written-data size with the unit: Byte.
- S8 is the start device where written data are stored. The data are arranged in the order from low byte to high byte.
- S9 is the communication timeout time within the range: 1~100 and with the unit: 0.1 second.
- **S10** is the times of re-transmission within the range: 0~3. When communication timeout occurs, the communication will be resent
- **D3** represents the error codes to read and write.


Error	Code	Evalenation		
Code 1 (High Byte)	Code 2 (Low Byte)	- Explanation		
XX	FF	Not conform to the DeviceNet standard		
20	01	The target slave does not exist.		
20	02	Unable to make the connection with the slave		
20	03	Sending explicit message failed.		
16	00	Explicit message response timeout.		

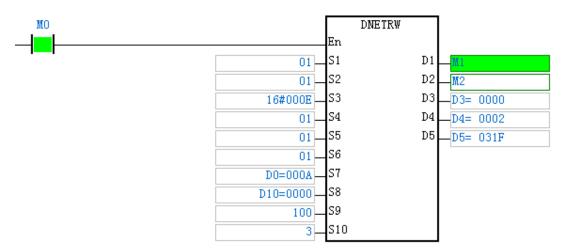
- **D4** is the read-data size with the unit: Byte.
- **D5** is the start device where read data are stored. The data are arranged in the order from low byte to high byte.
- D1 and D2 are communication completion flag and error flag respectively.

Application Example 1

Control requirement: when M0=ON, read the data of class1>>instance1>>attribute1 of the DeviceNet function card CMC-DN01.

■ Connection Figure

Parameters Setting and Device Explanation


Setup for AS01DNET-A

Parameter	Setting value	Description
Node ID	00	Set the node ID of AS01DNET-A to 00.
Baud rate	500 kbps	Set the baud rate of AS01DNET-A to 500 kbps.

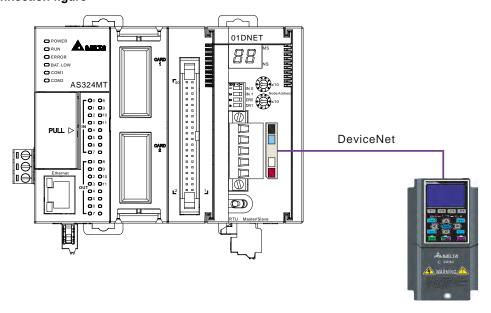
> Setup for VFD-C2000

Parameter	Setting value	Description
00-20	08	Frequency command source
00-21	05	Operation command source
09-30	0	Communication decoding method
09-70	01	Node ID of AC motor drive
09-71	02	Baud rate: 500Kbps

■ PLC Program

- > S1: The number of the module sending DeviceNet communication. The first one of the right side is 01.
- > S2: DeviceNet node ID (MAC ID); Node ID of VFD-C2000: 01.
- > S3 : Service code; 0X0E: read one single attribute content.
- > S4: Class ID; Class ID of CMC-DN01: 01;
- > S5 : Instance ID; Instance ID of CMC-DN01: 01;
- ➤ S6 : Attribute ID; Attribute ID of CMC-DN01: 01 ;
- S7: Write data size. When DNETRW instruction is used to read data, the value in S7 can be set to any data.
- > S8: The start device where the written data are stored. When DNETRW instruction is used to read data, the value in S8 can be set to any data.
- > S9 : Communication timeout time
- S10: Times of re-transmission. Times of re-sending communication when communication timeout occurs.
- > D1 : Completion flag
- D2 : Error flag
- D3 : Error code
- D4 : Read data size
- > D5: The start device where data are read.

10


■ Program Explanation

- When M0 changes to ON, execute the explicit message instruction DNETRW to read Class 1 >> Instance 1 >> Attribute 1 of the target equipment with node ID: 01. If the explicit message communication succeeds, the completion flag M1 changes to ON.
- When M0 changes to ON, AS01DNET-A sends out the request message only once. If the request message is to be resent, the instruction DNETRW need be re-triggered.
- > If the data reading succeeds, the content of Class 1>> Instance1 >> Attribute 1 of CMC-DN01 will be stored in D5. In this example, the content in D5 should be 031FHex.

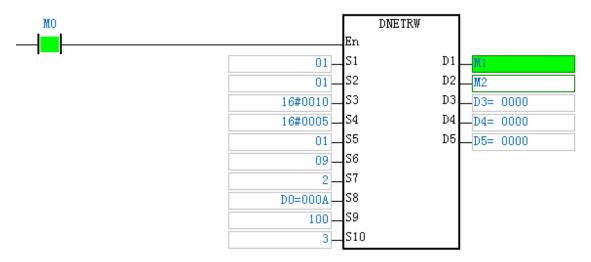
Application Example 2

Control requirement: When M1 changes to ON, set the content of Class ID: 0x05>> Instance 1>>Attribute ID: 09 of CMC-DN01 to 000AHex.

■ Connection figure

Parameters Setting and Device Explanation

Setup for AS01DNET-A

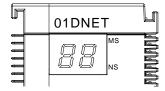

Parameter	Setting value	Description	
Node ID	00	Set the node ID of AS01DNET-A to 00.	
Baud rate 500 kbps Set the baud rate of AS01DNET-A to 500 kbps.			

Setup for VFD-C2000

Parameter	Setting value	Description	
00-20	08	Frequency command source	
00-21	05	Operation command source	
09-30	0	Communication decoding method	
09-70	01	Node ID of AC motor drive	
09-71	02	Baud rate: 500Kbps	

■ PLC Program

10


- > S1: The number of the module sending DeviceNet communication. The first one of the right side is 01.
- > S2: DeviceNet node ID (MAC ID); Node ID of VFD-C2000: 00.
- > S3 : Service code; 0X10: read one single attribute content.
- > S4: Class ID; Class ID of CMC-DN01: 05.
- > S5: Instance ID; Instance ID of CMC-DN01: 01.
- > S6: Attribute ID; Attribute ID of CMC-DN01: 09.
- > S7: Write data size with the unit: Byte. The written-data size is 2 in this example.
- > S8: The start device where the written data are stored.
- > S9 : Communication timeout time.
- > S10 : Times of re-transmission. Times of re-sending communication when communication timeout occurs.
- D1 : Completion flag.
- D2 : Error flag.
- D3: Error code.
- D4 : Read data size. When DNETRW instruction is used to write data, the value in D4 can be set to any data.
- ▶ D5 : The start device where read data are stored. When DNETRW instruction is used to write data, the value in D5 can be set to any data.

■ Program Explanation

- When M0 changes to ON, AS01DNET-A sends the request message and 000AHex is written to Class ID: 05>> Instance 1 >> Attribute ID: 09 of the target equipment with node ID: 01. If explicit message communication succeeds, the completion flag M1 changes to ON.
- When M0 changes to ON, AS01DNET-A sends out the request message only once. If the request message is to be resent, the instruction DNETRW need be re-triggered.

10.4.9 LED Indicators and Troubleshooting

AS01DNET-A has two LED indicators and one digital displayer. NS LED and MS LED display the connection status of AS01DNET-A. The digital displayer shows the node address and error information of AS01DNET-A as well as error information of the slave.

10.4.9.1. NS LED

LED status	Indication	Correction
OFF	No power; Or duplicate ID check has not been completed.	 Check if AS01DNET-A is powered and the connection is normal. Make sure that at least one node can communicate normally.
Green light blinking (ON:0.5s and OFF: 0.5s alternately)	The connection to the DeviceNet network failed.	No correction; Refer to Digital Displayer for troubleshooting.
Green light ON	Online; The connection to the DeviceNet network is normal.	No correction
Red light blinking (ON:0.5s and OFF: 0.5s alternately)	Communication error	Refer to Digital Displayer for troubleshooting.
Red light ON	Network trouble, duplicate node ID, no network power or Bus-OFF.	 Make sure that all the devices in the network have their unique node addresses. Check if the network installation is correct. Check if the baud rates of the master and slave are same. Check if the network power is normal.

10.4.9.2. MS LED

LED status	Indication	Correction
OFF	No power	Make sure that the power supply for AS01DNET-A is normal and the connection is proper.
Green light blinking (ON:0.5s and OFF: 0.5s alternately)	No module is configured.	Configure the scan list and then download the configuration to AS01DNET.
Green light ON	Input and output data are normal.	
Red light blinking	When AS01DNET works as the	Refer to Digital Displayer.
(ON:0.5s and	master, the slave in Scan List can not	Make sure that the slave information in Scan List

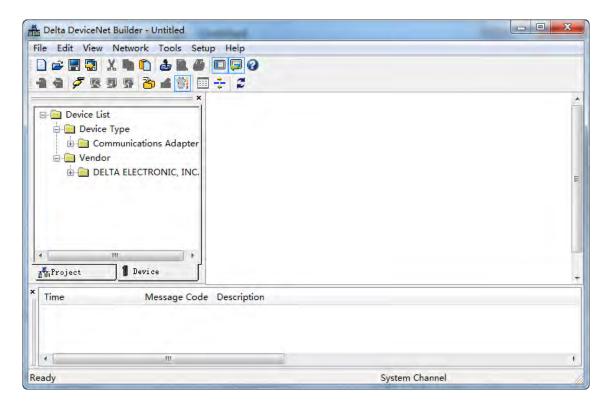
LED status	Indication	Correction
OFF: 0.5s	work normally.	matches that of the actually connected slave.
alternately)	When AS01DNET works as the	
	slave, an error occurs in the	
	configuration.	
		Check if the configuration is correct.
Red light ON	An error inside AS01DNET	Return the module to factory for repair if the error still exists after repower ON.

10.4.9.3. Combination of MS LED and NS LED

LED status		Indication	Correction	
NS LED	MS LED	Indication	Correction	
OFF	OFF	No power	Check if the power supply for AS01DNET-A is normal.	
OFF	Green light ON	Duplicate ID check has not been completed.	Make sure that the baud rate of at least one node in the network is the same as that of the module and their communication is normal.	
Red light ON	Green light ON	Duplicate ID check failed or Bus-OFF.	 Ensure that the node ID of AS01DNET is unique. Repower the module. 	
Red light ON	Red light blinking (ON:0.5s and OFF: 0.5s alternately)	No network power	 Check if the network cable connection is proper. Check if the network power supply is normal. 	
Red light ON	Red light ON	Hardware error	Return the module to the factory for repair.	

10.4.9.4. Digital Displayer

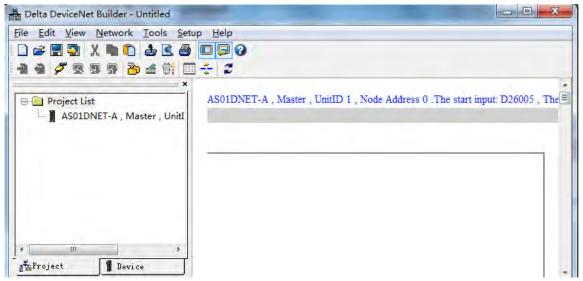
Code	Explanation	Correction	
0~63	Node address of AS01DNET-A (in normal operation)		
80	AS01DNET-A is in STOP status.	Turn the PLC to RUN and start I/O data exchange	
F0	The node ID of AS01DNET is the same as that of other node or exceeds the allowed range.	Ensure that the node address of AS01DNET is unique. Re-power AS01DNET.	
F1	No slave is configured in Scan List.	Configure the scan list and then download the configuration to AS01DNET.	
F2	Too low voltage of the work power	Check if the power supply for AS01DNET and the PLC is normal.	
F3	AS01DNET enters the test mode	Switch the function switch IN1 from On to Off and re-power AS01DNET-A.	
F4	BUS-OFF	 Check if the network cable is normal and the shielded cable is grounded. Check if the baud rates of all nodes in the network are same. Check if the start and end of the network cable are both connected with a 121Ω terminal resistor. Re-power AS01DNET-A. 	
F5	No network power	Check if the network cable is normal. Ensure that the network power is normal.	
F6	Internal error; Flash or RAM	If the error still exists after re-power, send AS01DNET-A back to the	

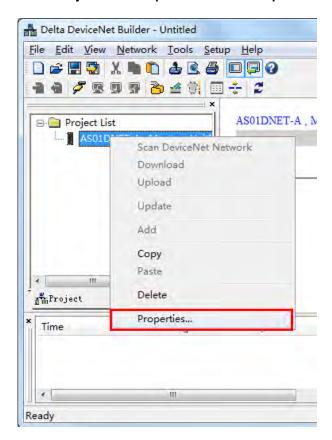

10.4.10 Master-Slave Mode Switch and 8 Baud Rates Setting via Software

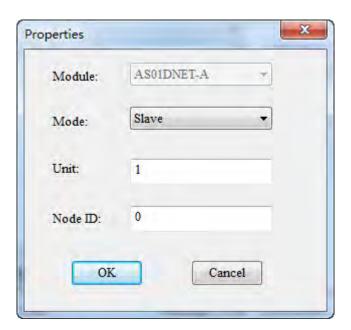
AS01DNET-A can serve as a DeviceNet master or slave by modifying its mode. When the AS01DNET-A module works as a slave, the input and output data sizes are both 8 Bytes by default. The maximum input and output data sizes are both 200 Bytes.

Under standard mode, AS01DNET-A supports three baud rates: 125K, 250K and 500K. Under non-standard mode, AS01DNET-A supports eight baud rates: 10K, 20K, 50K, 125K, 250K, 500K, 800K and 1M.

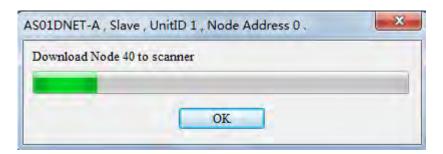
10.4.10.1. Setting ASO1DNET-A to Slave Mode


- Build a driver through the COMMGR software.
 Refer to Section 2.4 Communication Setting in the ISPSoft software for details.
- 2. Call the DeviceNet Builder software through the ISPSoft software. Refer to section 10.6 in this manual for details on how to operate.
- 3. The called DeviceNet Builder software interface is shown as below.

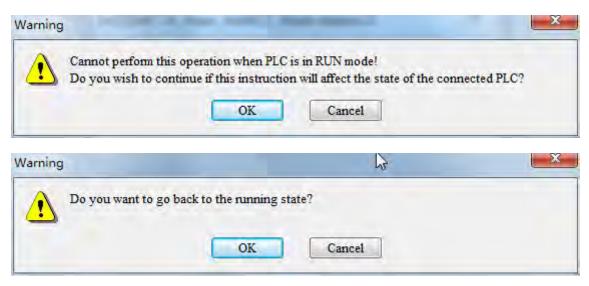

4. Selecting **Setup>> Communication Setting**, the following dialog box appears. Select the driver for connection of AS PLC and PC as below. Click **OK** to finish the selection of Driver.



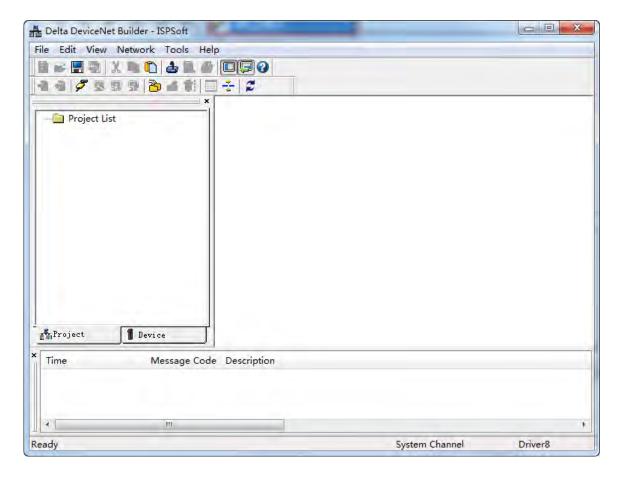
5. Click **Network** >> **Online** to scan the connected master.



6. Click **Project List>>Properties**. Then the **Properties** dialog box appears. Select **Slave** mode and then click **OK**.



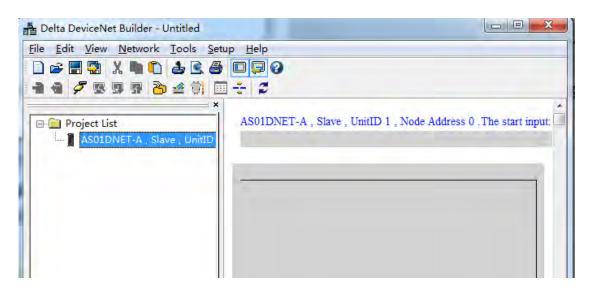
Click Network >> Download. If the PLC is in STOP state, the following dialog box will exist during the download.
The dialog box will disappear automatically after the download is finished. AS01DNET-A will be in slave mode after repower ON.



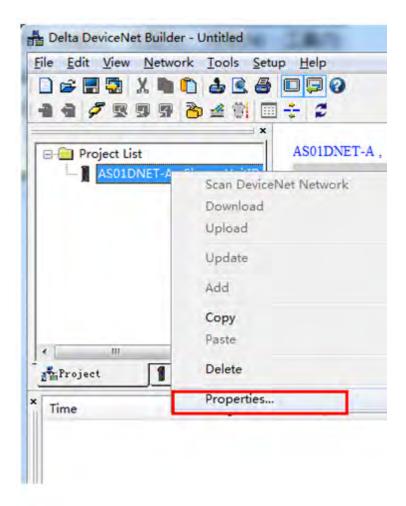
8. If the PLC is in RUN state, the **Warning** dialog boxes will pop out before and after the download. Users can click **OK** or **Cancel** according to actual situation.

10.4.10.2. Setting ASO1DNET-A to Master Mode

- Build a driver through the COMMGR software.
 Refer to Section 2.4 Communication Setting in the ISPSoft software for details.
- 2. Call the DeviceNet Builder software through the ISPSoft software. Refer to section 10.6 in this manual for details on how to operate.
- 3. The called DeviceNet Builder software interface is shown as below.

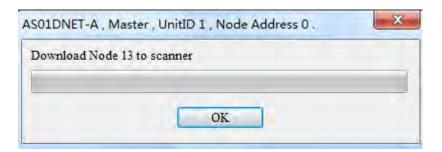


4. Selecting **Setup>> Communication Setting**, the following dialog box appears. Select the driver for connection of AS PLC and PC as below. Click **OK** to finish the selection of Driver.

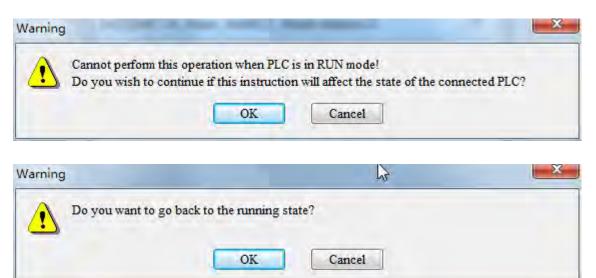


10

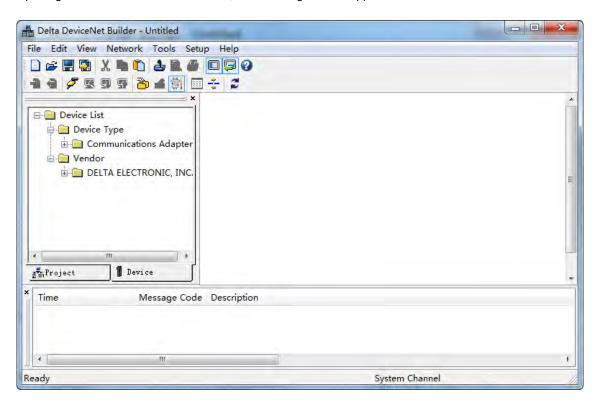
5. Click **Network** >> **Online** to scan the connected slave.



6. Click **Project List>>Properties** as below. Then the **Properties** dialog box appears. Select **Master** mode and then click **OK**.

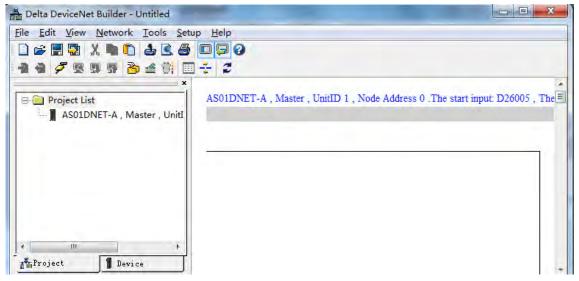


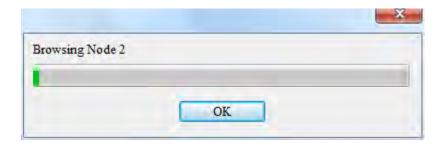
Click Network >> Download. If the PLC is in STOP state, the following dialog box will exist during the download.
The dialog box will disappear automatically after the download is finished. AS01DNET-A will be in master mode after repower ON.

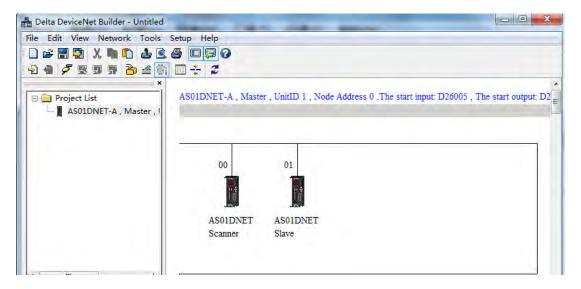

8. If the PLC is in RUN state, the **Warning** dialog boxes will pop out before and after the download. Users can click **OK** or **Cancel** according to actual situation.

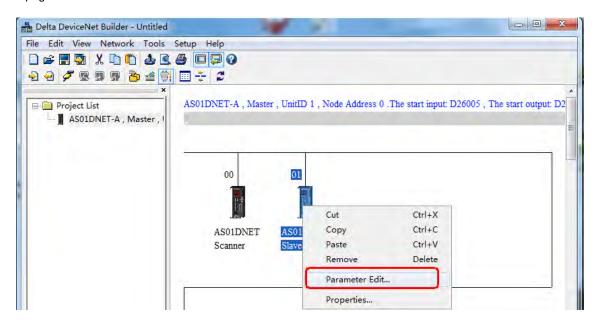
10

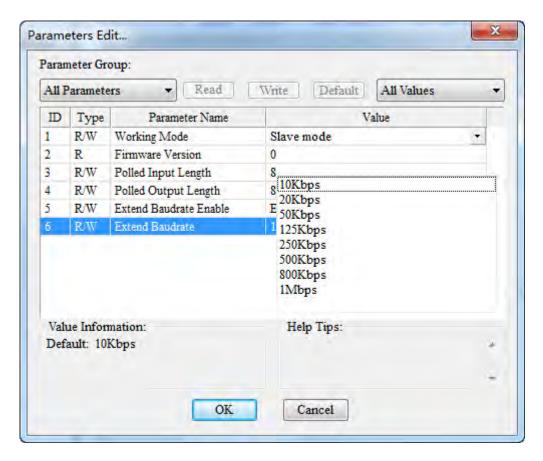
10.4.10.3. Baud Rate Setting of When ASO1DNET-A is in Slave Mode


1. Opening the DeviceNet Builder software, the following window appears.

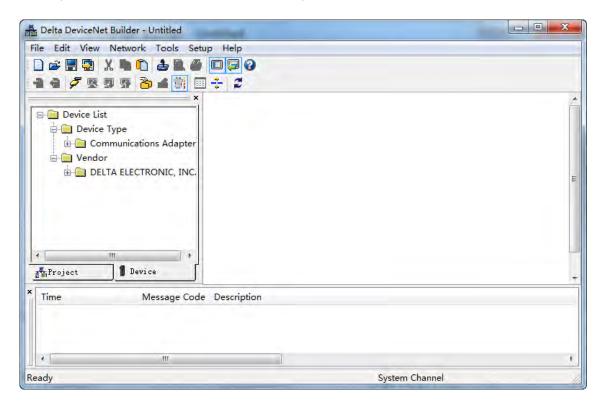

2. Selecting **Setup>> Communication Setting**, the following dialog box appears. Select the driver for connection of AS PLC and PC as below. Click **OK** to finish the selection of Driver.

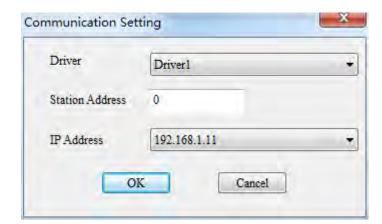

3. Click **Network** >> **Online** to scan the connected master.


4. Clicking Network>> Scan DeviceNet Network, the DeviceNet Builder software starts to scan the whole network.

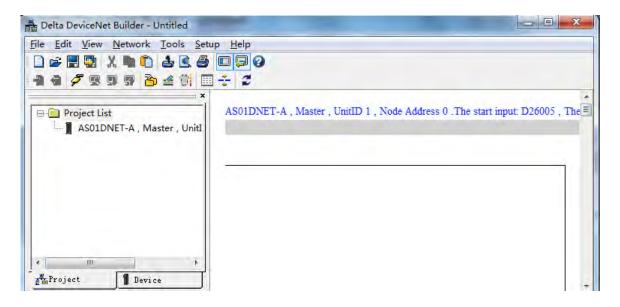

5. After scanning is finished, all node icons and device names which have been scanned in the network will appear on the following interface. The node address of AS01DNET-A is 01 in this example.

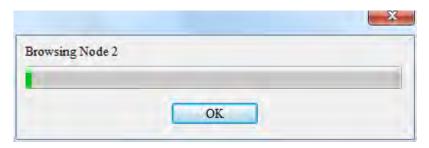
6. Right-click AS01DNET(Slave), select **Parameter Edit...** on the drop-down menu to enter the **Parameter Edit** page.

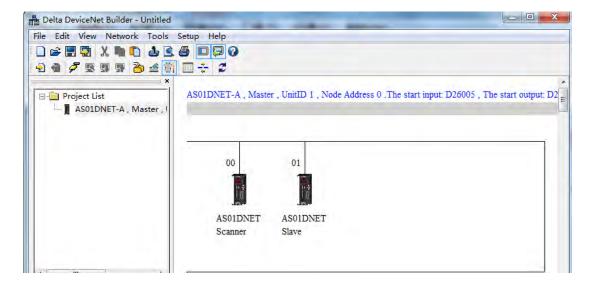

7. Set **Extend Baudrate Enable** to **Enable** and then select the desired baud rate. Click **Write** button after setting is finished.

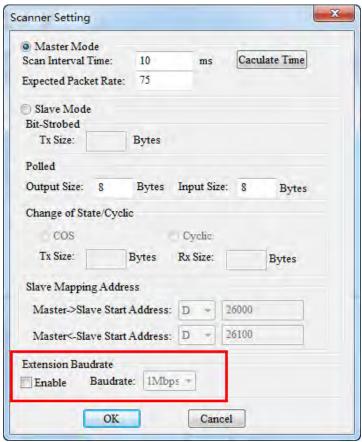

8. After the download is completed, switch DR0 and DR1 of AS01DNET to ON. Finally, repower AS01DNET-A.

10.4.10.4. Baud Rate Setting of When ASO1DNET-A is in Master Mode


1. Opening the DeviceNet Builder software, the following window appears.


2. Selecting **Setup>> Communication Setting**, the following dialog box appears. Select the driver for connection of AS PLC and PC as below. Click **OK** to finish the selection of Driver.


3. Click **Network** >> **Online** to scan the connected master.


4. Clicking Network>> Scan DeviceNet Network, the DeviceNet Builder software starts to scan the whole network.

5. After scanning is finished, all node icons and device names which have been scanned in the network will appear on the following interface. The node address of AS01DNET-A is 00 in this example.

6. Click **Network** >> **Scanner Setting**. The **Scanner Setting** dialog box appears. Select **Enable** under **Extension Baudrate** and the desired baud rate as below. Click **OK** after the setting is finished.

7. Click **Network** >> **Download** to download the extension baud rate setting to the master. After the download is completed, switch DR0 and DR1 of AS01DNET-A to ON. Finally, repower AS01DNET-A.

10.5 RTU Mode

10.5.1 Introduction of AS01DNET (in RTU Mode)

- As DeviceNet slave, AS01DNET-A supports standard DeviceNet communication protocol.
- Supports explicit connection in the predefined master/slave connection and I/O polling connection.
- The network configuration software DeviceNet Builder provides graphic configuration interface, and supports auto scan and recognition of I/O modules, free mapping of special module parameters as I/O exchange data as well as the setting of exception handling and diagnosis of module error states.
- Users can choose to retain the data in registers or not when the network is disconnected according to actual need.
- AS01DNET (in RTU mode) can connect max. 8 AS-series extension modules including digital modules, analog modules, temperature modules and etc. The mapping length of digital modules is determined by number of digital points. The max. length of mapping parameters for input of other module is 20 words and the max. length of mapping parameters for output of other module is 20 words.
- Max lengths for output data and input data of AS01DNET (in RTU mode) are both 100 bytes.
- AS01DNET (in RTU mode) needs the external 24VDC power supply.

10.5.2 AS-Series Extension Modules Connectable to ASO1DNET (RTU)

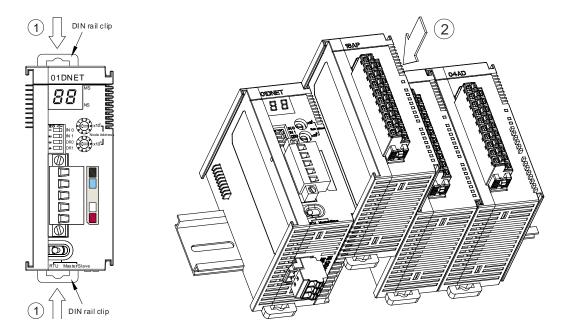
The model and specification of AS-series digital modules connectable to AS01DNET (in RTU mode):

Picital I/O as a dula	Length of I/O mapping data (Unit: words)			
Digital I/O module model	(Master→AS01DNET)	(AS01DNET→Master)		
AS08AM10N-A	None	1		
AS16AM10N-A	None	1		
AS32AM10N-A	None	2		
AS64AM10N-A	None	4		
AS08AN01T-A	1	None		
AS08AN01R-A	1	None		
AS08AN01P-A	1	None		
AS16AN01T-A	1	None		
AS16AN01R-A	1	None		
AS16AN01P-A	1	None		
AS32AN02T-A	2	None		
AS64AN02T-A	4	None		
AS16AP11T-A	1	1		
AS16AP11R-A	1	1		
AS16AP11P-A	1	1		

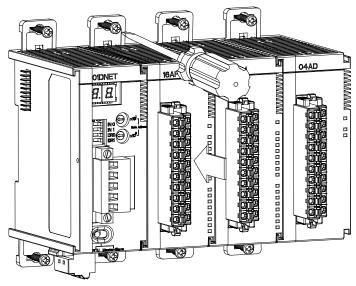
The model and specification of AS-series special modules connectable to AS01DNET (in RTU mode):

	Length of I/O mapping data (Unit: words)		
Special module model	DeviceNet→AS01DNET(RTU)	AS01DNET(RTU)→DeviceNet	
AS04AD-A	6	None	
AS04DA-A	2	4	
AS06XA-A	10	4	
AS02LC-A	7	1	
AS04RTD-A	10	None	
AS06RTD-A	14	None	
AS04TC-A	10	None	
AS08TC-A	18	None	
AS08AD-B	18	None	
AS08AD-C 18		None	

Note:

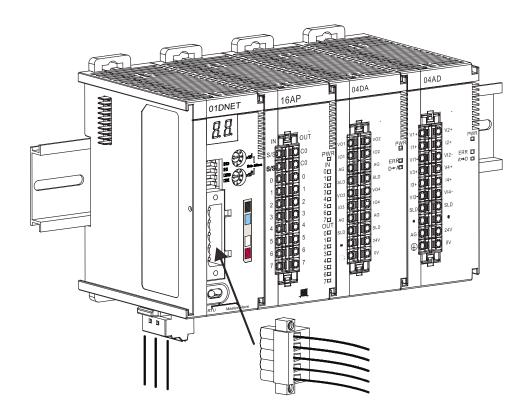

- ✓ The length of mapping data of the I/O modules connected to AS01DNET (in RTU mode) is fixed. The default mapping parameters of special modules must be chosen.
- Besides default mapping parameter configuration, you can also choose other parameters for I/O mapping according to need when special modules are connected to AS01DNET (RTU). The max. input length and max. output length of default parameters and user-added mapping parameters of each special module are both 20 words.

10.5.3 Installation

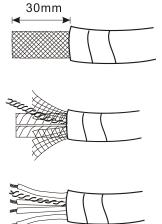

10.5.3.1. Installing ASO1DNET (in RTU Mode)

10.5.3.1.1. Connecting ASO1DNET-A (in RTU Mode) and Extension Module on DIN Rail

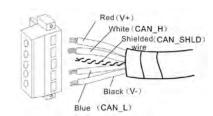
- Please push the clips of AS01DNET-A (RTU) in the directions indicated by arrow ① until hearing a click. That
 means the DIN clips are interlocked each other. Then insert the module hooks at the bottom into the DIN rail
 mounting slot until hearing a click. That means AS01DNET-A (RTU) is connected to the DIN rail.
- To install the second module AS16AP11T, push the clips of AS16AP11T in the direction indicated by arrow ①. Then aim the left-side slot of AS16AP11T at the right-side slot of AS01DNET-A (RTU) and push AS16AP11T in the direction as illustrated by arrow ② until hearing a click. That means the module is on the DIN rail and is connected to AS01DNET-A (RTU). In the same way, install more IO modules on the right side of AS01DNET-A (RTU) and DIN rail one by one.



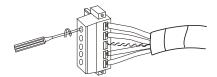
Tighten the screws on the top of the module at the end of installing.


10.5.3.1.2. Connecting the DeviceNet Communication Connector

- The color marks on the communication connector match the colors of the connection cables. During the wiring, please check whether the colors of the connection cable and the color mark are same.
- > Delta's power module is recommended as the power module in the communication.



10.5.3.2. Connecting the Cable to DeviceNet Connector


- Use an efficient tool to peel the communication cable for approx. 30mm. DO NOT damage the shielded cable during the peeling.
- Peel off the metallic shielded net and foil, and you will see 2 power cables (red and black), 2 signal cables (blue and white) and 1 shielded cable.
- Peel off the exterior metallic shielded net, foil and the plastic cover of the power cable and signal cable for appropriate length.

 Insert the peeled communication cables into the holes in the connector in correct order.

 Tighten the screws on the connector by a slotted screwdriver and fix the communication cables in the holes in the connector.

10.5.4 Configuring AS01DNET (in RTU mode)

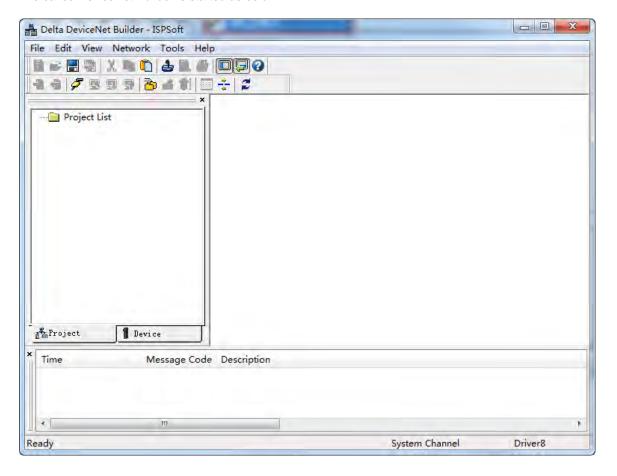
As DeviceNet slave, AS01DNET (RTU) mainly achieves the data exchange between the master and AS-series I/O modules connected to AS01DNET.

- Transmits output data of DeviceNet master to I/O modules.
- Transmits input data from I/O modules to DeviceNet master.

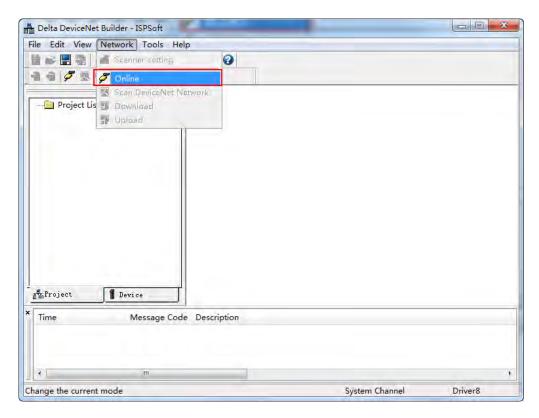
10.5.4.1. Terms

No	Name	Unit	Description
1	Control word	WORD	The first WORD for output data that the master assigns to AS01DNET is the control word of AS01DNET for setting the work mode of AS01DNET. When the content in the control word is set to 2, AS01DNET is in STOP mode. When the content in the control word is set to 1, AS01DNET is in RUN mode.
2	Status word	WORD	The first WORD for input data that the master assigns to AS01DNET is the status word of AS01DNET for displaying the operation state of AS01DNET. Refer to 10.5.4.3.4 for more about status word.
5	Range of input data in modules	WORD	Determined by start input address and input mapping parameter length of each module.
6	Range of output data in modules	WORD	Determined by start output address and output mapping parameter length of each module.
7	Input data size	WORD	The sum of the size of status word of AS01DNET and the size of input data of the modules connected to it. The status word occupies one word. Digital input module takes 16 bits as one word. The input data length of analog I/O modules and temperature modules are determined by the default mapping parameter length and user-added parameter length, no more than 20 words.
8	Output data size	WORD	The sum of the size of control word of AS01DNET and the size of output data of the modules connected to it. The control word occupies one word. Digital output module takes 16 bits as one word. The output data length of analog I/O modules and temperature modules are determined by the default mapping parameter length

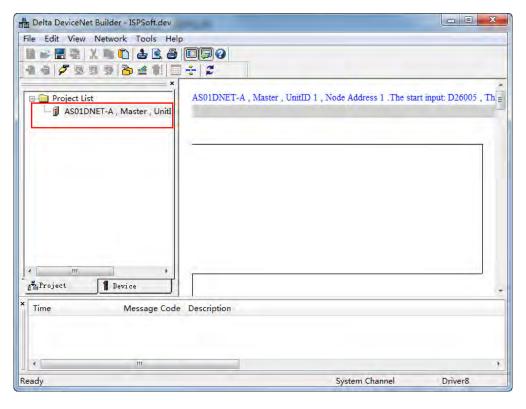
No	Name	Unit	Description
			and user-added parameter length together, no more than 20 words.

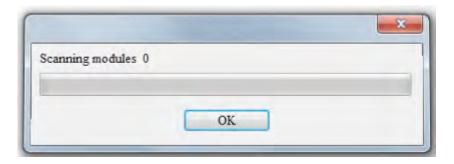

10.5.4.2. Introduction of Software

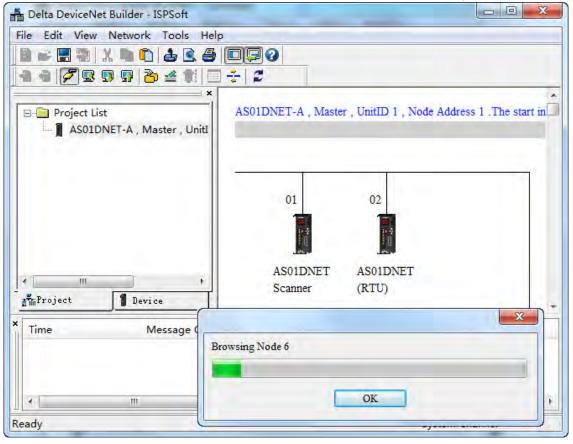
Before the new version of DeviceNet Builder software is used for making a connection with PLC, make sure that the communication manager COMMGR has been installed. (Refer to ISPSoft user manual for details on COMMGR usage.)


10.5.4.2.1. Making a connection between DeviceNet Builder and PLC

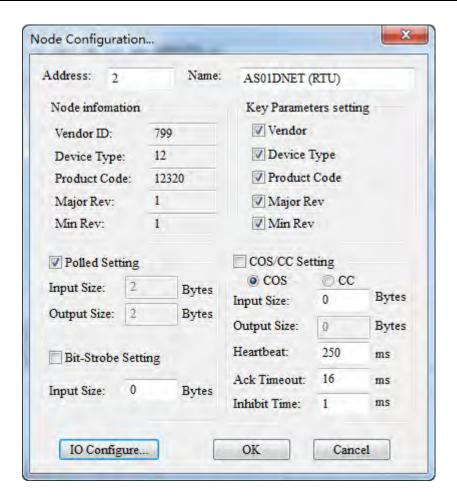
Before making a normal connection between DeviceNet Builder and PLC, you have to do relevant setup for COMMGR software.


- Build a driver through the COMMGR software.
 Refer to Section 2.4 Communication Setting in ISPSoft help file.
- 2. Call DeviceNet Builder via ISPSoft
 Refer to section 10.6 for details on how to operate.
- 3. The called DeviceNet Builder is started as below.

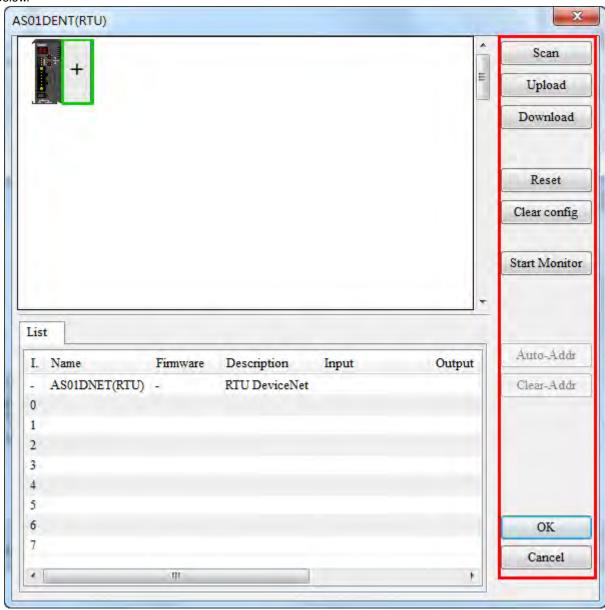

4. Click menu Network>> Online.


The master module AS01DNET-A which has been scanned is shown in the left-side Project List.

5. Click Network >> Scan DeviceNet Network.



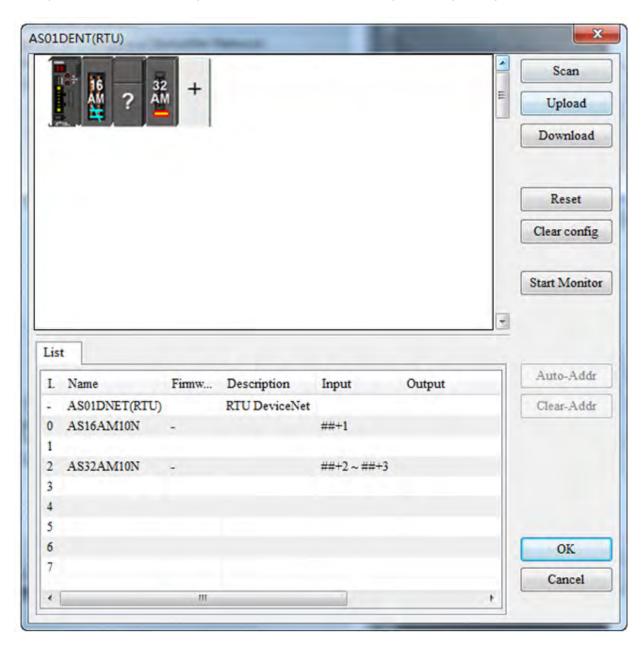
6. After online is implemented, click the **Scan DeviceNet Network** button to start scanning the nodes in the network.



10.5.4.2.2. Main Configuration Page of ASO1DNET (RTU)

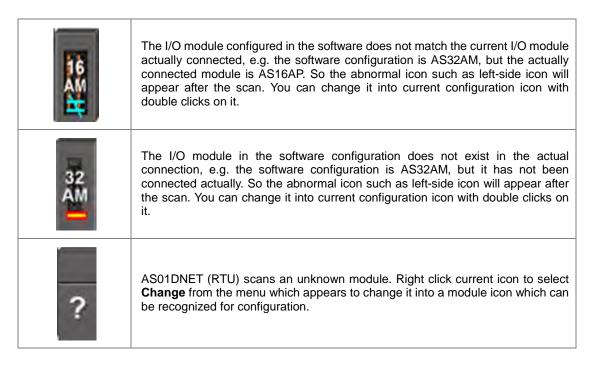
After scanning is finished, double click the AS01DNET (RTU) node in the network. Then the Node Configuration...
window comes out. The polled transmission is supported with default input data size of 2 bytes and output data size of
2 bytes which are mapping address lengths of control word and status word of AS01DNET (RTU) respectively.
Input Size and Output Size under Polled Setting mean the lengths of AS01DNET (RTU) parameters which are
mapped in the master.

2. Click the **I/O Configure...** button in the **Node Configuration...** window. Then the main configuration page appears as below.

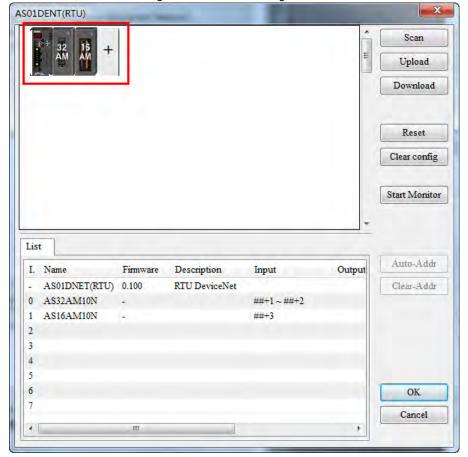


Explanation of parameters on the AS01DNET (RTU) configuration page

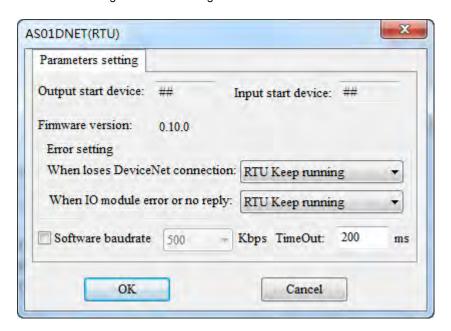
Item	Description
Scan	All I/O modules currently connected to the right side of AS01DNET (RTU) are scanned. The existing modules in the software will be compared with the actually connected I/O module. The mismatched one will be displayed in an abnormal icon.
Upload	Upload and show the configuration data including I/O list, I/O configuration, parameter mapping and basic control information in AS01DNET (RTU) in the software.
Download	Download current AS01DNET (RTU) configuration including I/O list, I/O configuration, parameter mapping and basic control information to AS01DNET (RTU), which is retained when the power is turned off.
Reset	Make the connected AS01DNET (RTU) restart.
Clear config	Clear the configuration data stored in the latched area and automatically reset the configuration. Then the indicator displays F1.
Start Monitor	Watch and set in real time the configured exchange data in current system; change output data, watch input data and use control word to control the operation state of AS01DNET (RTU) in real time.
Name	Name of each module


Item	Description			
Firmware	Firmware version of each module. Choosing corresponding version of firmware, download the module parameter information which matches the firmware version.			
Description	The description of basic information of each module.			
Input	The mapping range of input data of each module, determined by start address offset of mapping input data and the size.			
Output	The mapping range of output data of each module, determined by start address offset of mapping output data and the size.			
Comment	Add a comment for each I/O modules			
ОК	The current configuration data will not be saved until you click the OK button to finish the configuration.			
Cancel	Clicking the Cancel button to exit AS01DNET (RTU) configuration page, current configuration data will not be saved.			

3. Clicking the **Scan** button on the page, the main AS01DNET (RTU) configuration page changes as below.


10

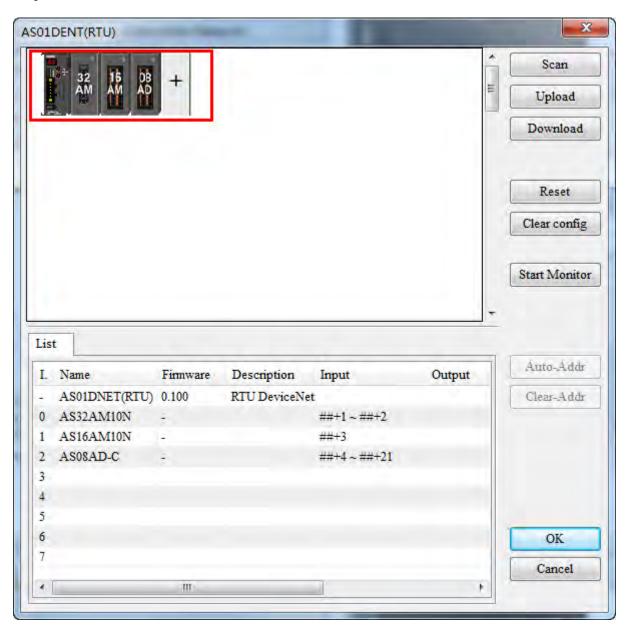
After the I/O modules connected to AS01DNET (RTU) are scanned, abnormal icons may appear. Here is the list of abnormal icons.



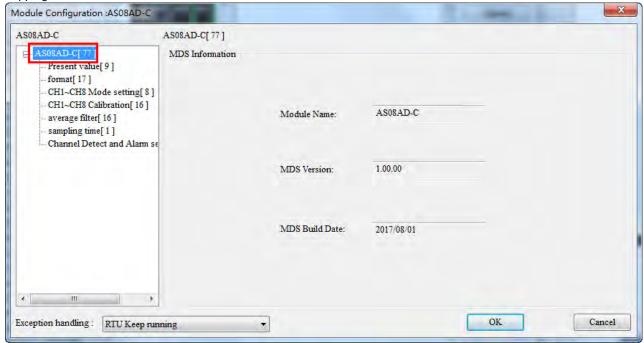
10.5.4.2.3. ASO1DNET (RTU) Parameters Setup Page

After I/O modules are scanned, the main configuration interface changes as follows.

Double click **AS01DNET (RTU)** icon on the far left of the configuration page. Then the parameter setting interface of AS01DNET (RTU) comes out for setting the error handling method as follows.



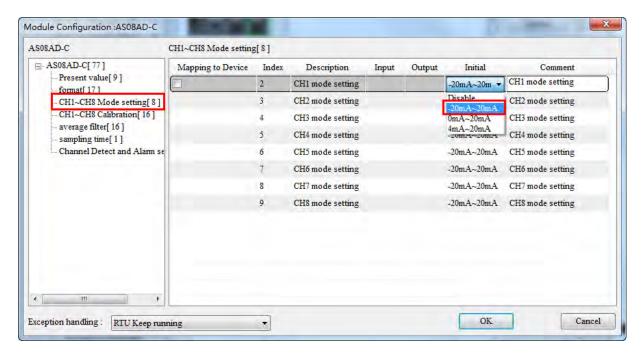
Explanation of AS01DNET (RTU) parameter setup:


Item	Description	Default
Output start address	The start output address of AS01DNET (RTU), occupying one word.	None
Input start address	The start input address of AS01DNET (RTU), occupying one word.	None
When loses DeviceNet connection	AS01DNET (RTU)'s error handling method when AS01DNET (RTU) and DeviceNet master are disconnected. "RTU keep running" and "RTU stop" are for option.	
When IO module error or no reply	AS01DNET (RTU)'s error handling method when an error occurs in any one of I/O modules connected to the right side of AS01DNET (RTU). "RTU keep running" and "RTU stop" are for option.	RTU keep running
Software baud rate	Chooses the extension baud rate of AS01DNET (RTU) after ticking the checkbox of it. The selected baud rate is stored in AS01DNET (RTU) after the download and it will not take effect until the hardware switch of AS01DNET (RTU): DR1 and DR0 are both ON. Refer to section 10.2.6 for details on function switch.	None
Firmware version	Displays the firmware version of AS01DNET (RTU).	None

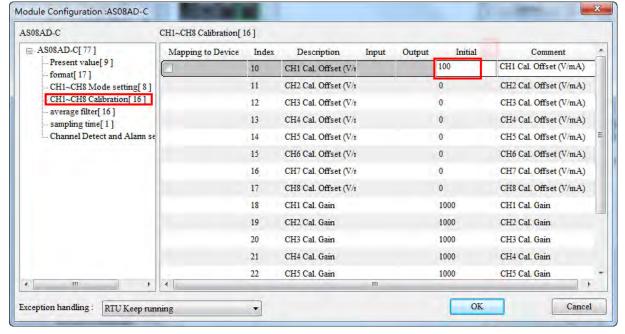
10.5.4.2.4. I/O Module Configuration Page

The mapping parameters of each module can be set through double clicks on the selected I/O module icon on the following interface.

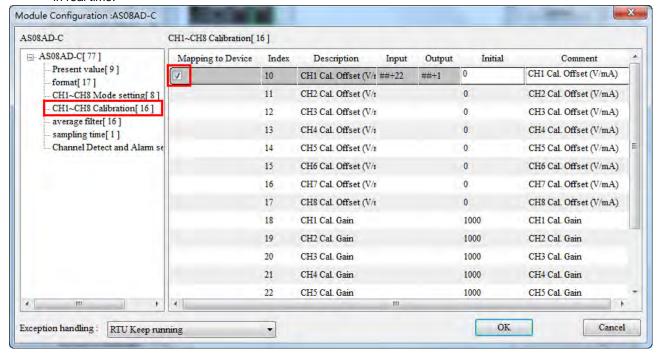
Double click the 08AD icon. Then the AS08AD-C configuration interface appears as below for configuration of parameter mapping of AS08AD-C module.



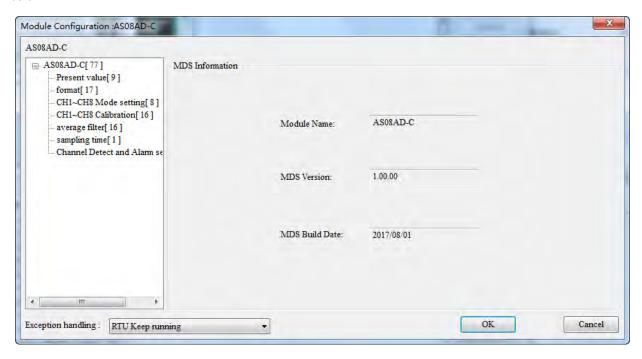
Explanation of I/O module configuration interface:


Item	Description			
MDS information	Displays module name, MDS version and creation date. The module parameters will be shown in the left-side window based on the MDS file. For explanation of module parameters, refer to the relevant module manual.			
I/O parameter list	Displays all module parameters read from the MDS file of the module. Set up these parameters to control the operation of the module.			
Exception handling	The error handling of AS01DNET (RTU) when AS01DNET (RTU) detects that an error occurs in the module. "RTU keep running" or "RTU stop" can be selected as the solution to the error.			

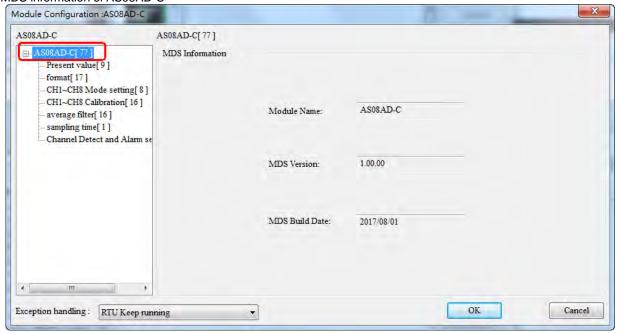
Generally, the settings for I/O module parameters and device mappings can be made in the following three cases.


Case 1: Select one appropriate parameter value from the drop-down list in the **Initial** column, e.g. select -20Ma~+20mA as channel 1 input mode of AS08AD-C.

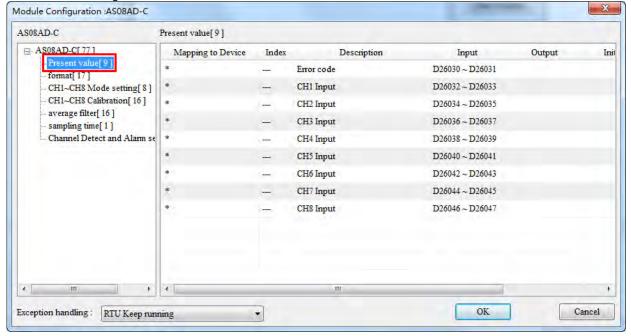
Case 2: Manually enter the value for the parameter to change in the Initial column, e.g. write 100 for CH1 Cal.Offset of AS08AD-C).

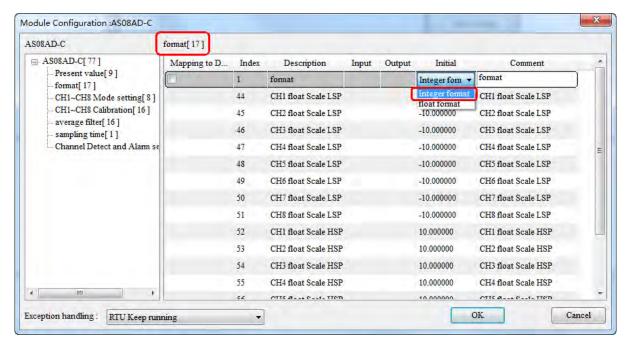


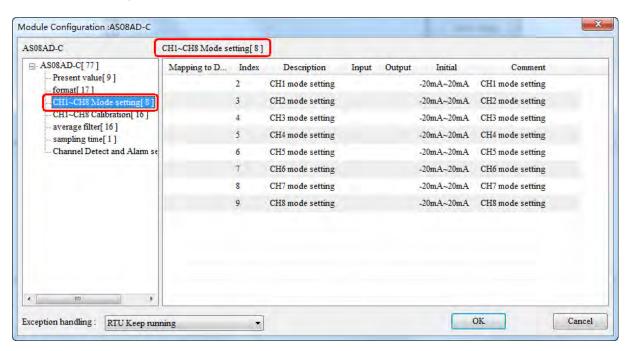
Case 3: For the module parameter which need be monitored in real time or need be modified in its value, tick the desired parameter in the **Mapping to Device** column and then the corresponding value of the parameter will map to the bus data for exchange i.e. the D registers in PLC. After the values of the ticked parameters in the **Mapping to Device** column go to the software monitor page, the current values of parameters can be monitored and modified in real time.

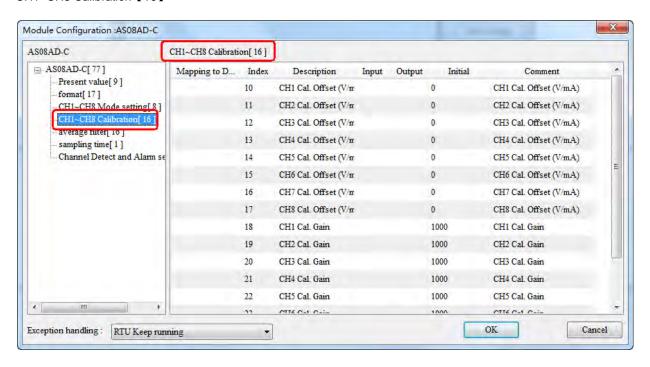


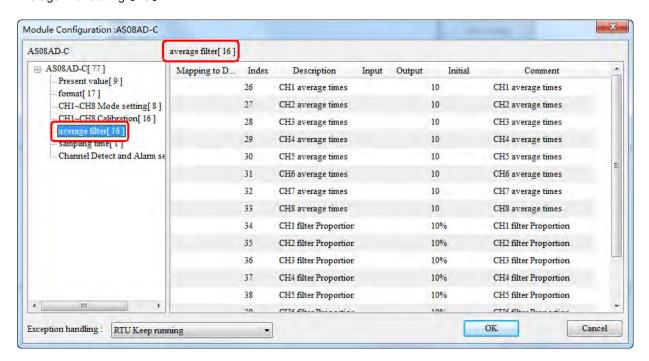
Explanation of IO module parameters

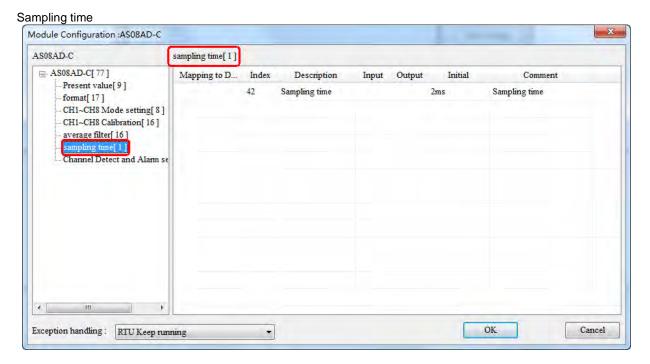

Double click the icon of AS08AD-C module. Then the **Module Configuration: AS08AD-C** dialog box comes out as below.


MDS information of AS08AD-C

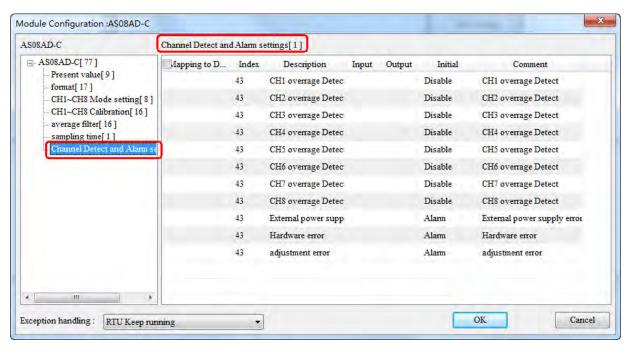

Present value setting


Format setting (Integer format and Float format for option)

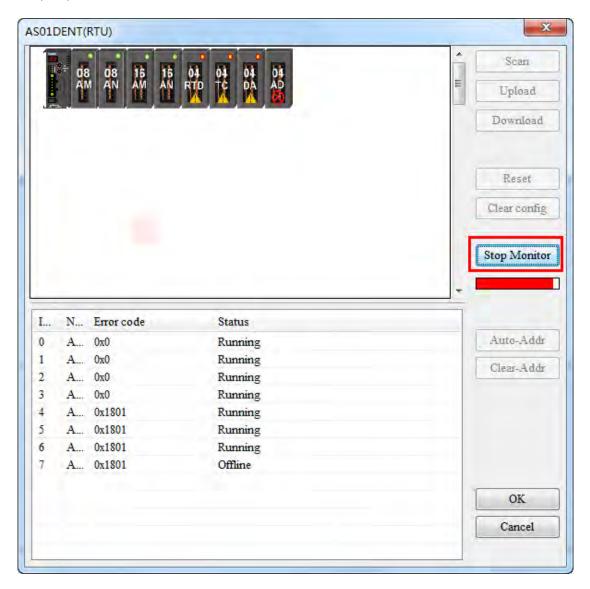

CH1~CH8 Mode setting [8]



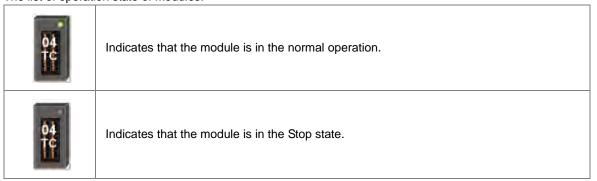
CH1~CH8 Calibration [16]



Average filter setting [16]



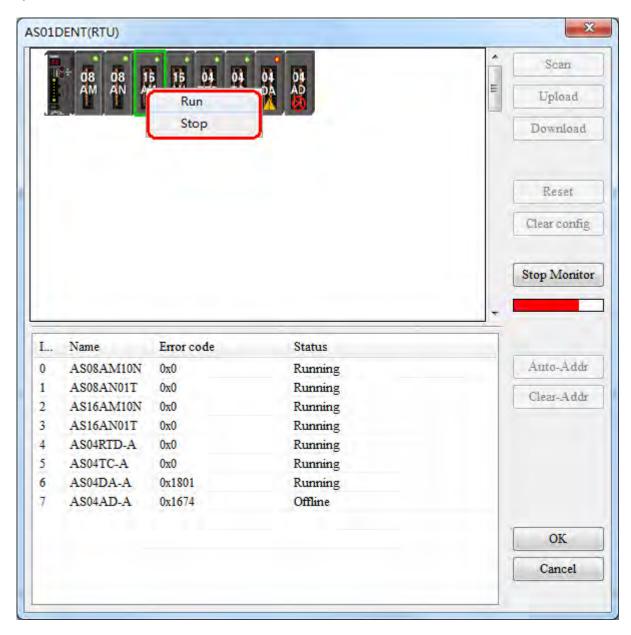
Channel Detect and Alarm settings



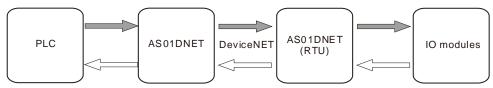
10.5.4.2.5. Monitor Function of the Software

When the software is in online mode and current configuration in AS01DNET (RTU) is the same as that stored in the software, click the **Start Monitor** button to enter the monitor interface and start to monitor the operation states of AS01DNET (RTU) and I/O modules in real time.

The list of operation state of modules:

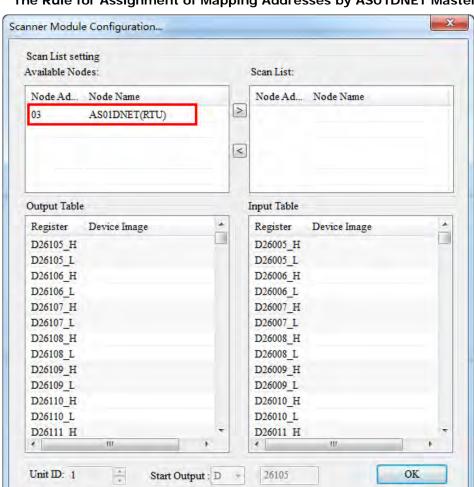


Indicates that the module is in the warning or error state. For details on errors, refer to explanation of error codes in the related product manual.


Indicates that the actually connected module does not match the module configured in the software or currently configured module has been disconnected.

On the following interface, right click the selected module icon and select **RUN** or **Stop** from the drop-down box to change the operation state of the I/O module.

10.5.4.3. DeviceNet Mapping Data


The model of the entire mapping data exchange is displayed below and eventually data will map to the registers in the PLC of the master.

Note: All mapping addresses mentioned below means the D registers in the PLC.

The start input address and start output address of AS01DNET (RTU) are assigned automatically by the master when AS01DNET (RTU) is added to the master. The input mapping address length and output mapping address length of AS01DNET (RTU) are determined by the configuration of modules connected to AS01DNET (RTU).

The start input and output mapping addresses of one I/O module are assigned automatically by the software. Its input mapping address length and output mapping address length are determined by the configuration of the module. The range of input / output mapping address is limited by the input / output mapping address range of AS01DNET (RTU).

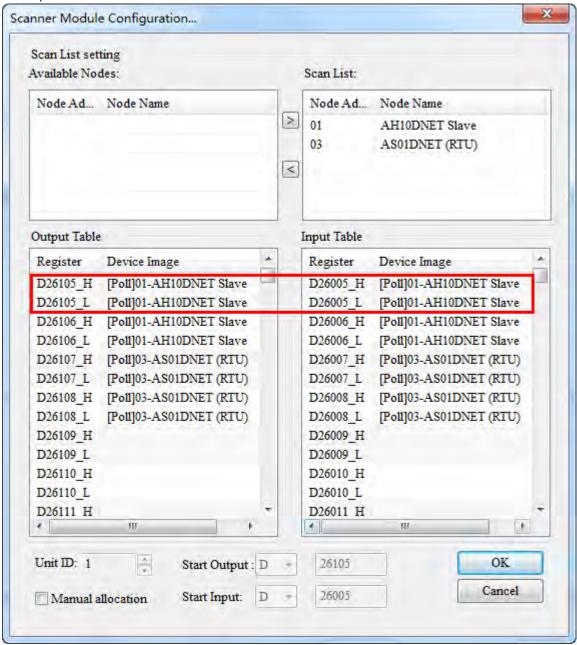
10.5.4.3.1. The Rule for Assignment of Mapping Addresses by AS01DNET Master

Data mapping areas are assigned according to the following table.

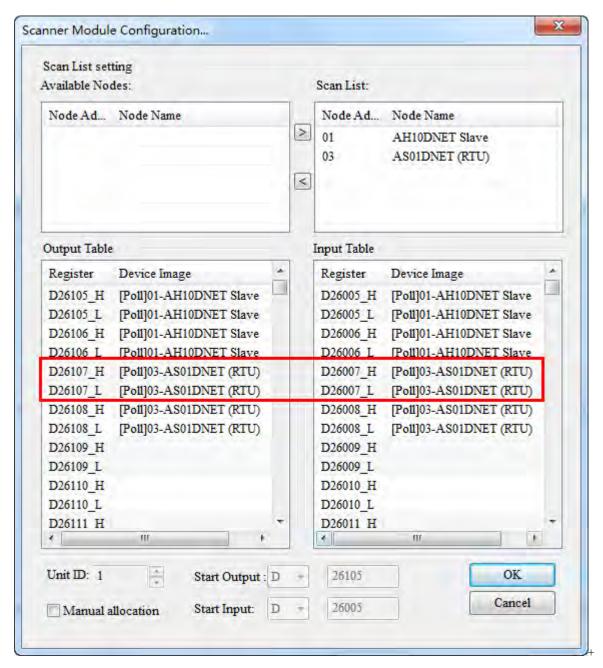
Manual allocation

Input area: Slave Master			Output area: Master ⇒ Slave			
Register in AS PLC	Purpose	Data size	Register in AS PLC	Purpose	Data size	
D26000~D26003	Scan-list node state indication area	4 words	D26100~D26103	Bit-strobe command area	4 words	
D26004	Scanner module state indication area	1 word	D26104	Reserved	1 word	
D26005~D26099	DeviceNet input data area; for receiving state data back from slaves	95words	D26105~D26199	DeviceNet output area; the data in the registers will be sent to slaves as control data.	95 words	

Start Input: D


26005

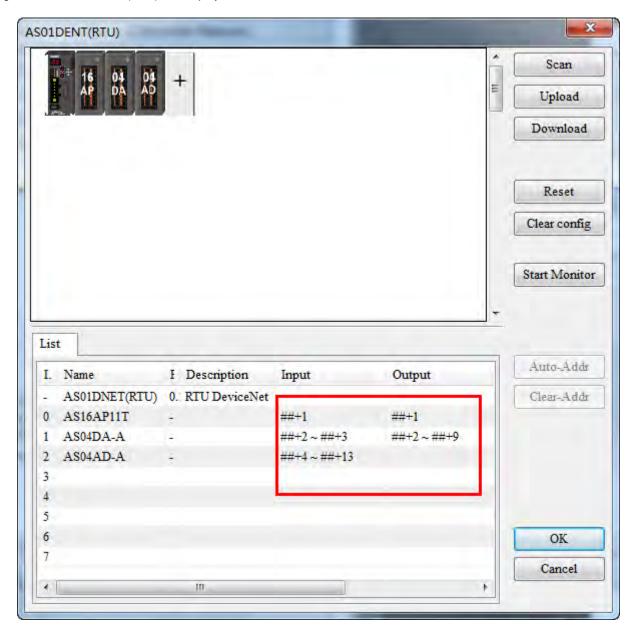
Cancel


10.5.4.3.2. The Rule for Assignment of Mapping Addresses for ASO1DNET (RTU)

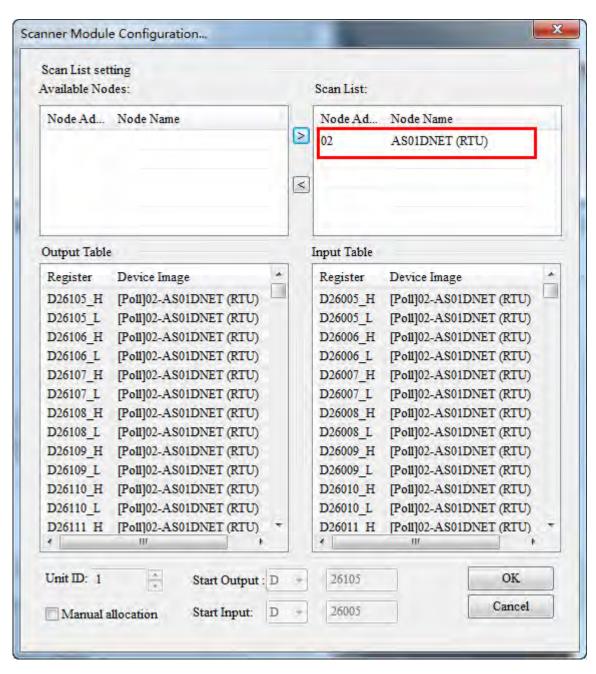
The start input and start output mapping addresses of AS01DNET (RTU) are assigned automatically by the master when AS01DNET (RTU) is added to the master. The master assigns mapping addresses of AS01DNET (RTU) according to input mapping address length and output mapping address length. Input mapping address length and output mapping address length are determined by the configuration parameters of all modules connected to AS01DNET (RTU). The start addresses of AS01DNET (RTU) will not be assigned until AS01DNET (RTU) is added to the master and they are related to the order of adding slaves to the master.

When there are two slaves of AH10DNET and AS01DNET (RTU), the input size and output size of AH10DNET are both 4 bytes and the input size and output size of AS01DNET (RTU) are both 4 bytes. If AS01DNET (RTU) is added to the master before AH10DNET is added to the master, then the input mapping addresses and output mapping addresses of AS01DNET (RTU) are respectively D26005~D26006 and D26105~D26106 as below. D26005 and D26105 are respectively the start input mapping address and start output mapping address, i.e. status word and control word of AS01DNET (RTU). The registers after start input mapping address and start output mapping address are for mapping the configuration parameters of I/O modules.

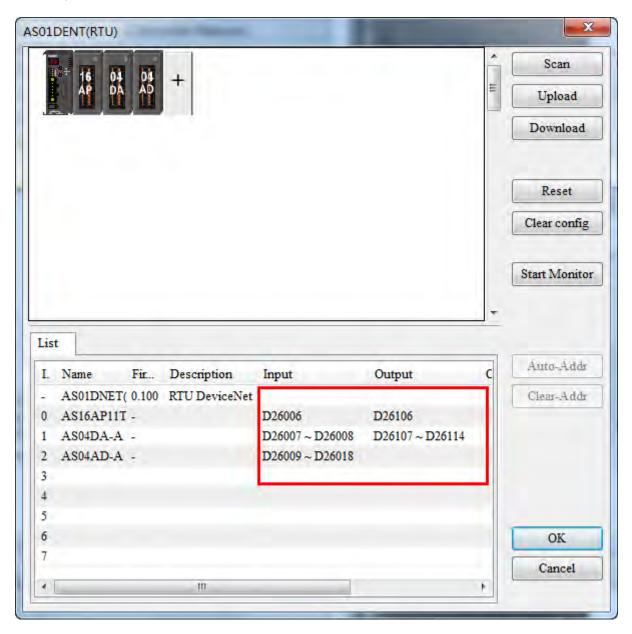
If AS01DNET (RTU) is added to the master after AH10DNET is added to the master, then the input mapping addresses and output mapping addresses of AS01DNET (RTU) are respectively D26007~D26008 and D26107~D26108 as below. D26007 and D26107 are respectively the start input mapping address and start output mapping address, i.e. status word and control word of AS01DNET (RTU). The registers after start input mapping address and start output mapping address are for mapping the configuration parameters of I/O modules.



10.5.4.3.3. The Rule for Assignment of Mapping Addresses for I/O Modules


Each module has two forms of data mapping. When DeviceNet master has not assigned the start input mapping address and start output mapping address to AS01DNET (RTU), the contents in **Input** and **Output** in the following figure represent offsets based on start input or start output mapping address of AS01DNET (RTU). After DeviceNet master has assigned the start input mapping address and start output mapping address to AS01DNET (RTU), the contents in **Input** and **Output** in the following figure represent mapping addresses of parameters in the modules on the right of AS01DNET (RTU). When AS01DNET (RTU) is added to **Scan List** on the page of **Scanner Module Configuration...**, DeviceNet master assigns start input and output mapping addresses to AS01DNET (RTU). When AS01DNET (RTU) is removed from **Scan List** on the page of **Scanner Module Configuration...**, the start input and start output mapping addresses of AS01DNET (RTU) are unknown.

10


Before the master assigns mapping addresses to AS01DNET (RTU), the device mappings of modules connected to the right side of AS01DNET (RTU) are displayed as below.

After AS01DNET (RTU) is pulled into **Scan List**, the mapping addresses that the master assigns to AS01DNET (RTU) are shown as below.

After the master assigns mapping addresses to AS01DNET (RTU), the mapping devices of the modules connected to the right side of AS01DNET (RTU) are shown as below.

The software automatically assigns mapping addresses of module parameters in the arrangement order of modules connected to the right side of AS01DNET (RTU) from left to right.

Below is the table of configuration of one master AS01DNET and one slave AS01DNET (RTU) and mapping addresses that the software automatically assigns to each module. D26005 and D26105 are the control word and status word of AS01DNET (RTU). The input mapping address and output mapping address of AS16AP are D26006 and D26106 respectively. The input mapping addresses and output mapping addresses of AS04DA are D26007~D26008 and D26107~D26114 respectively. The input mapping addresses of AS04AD are D26009~D26018.

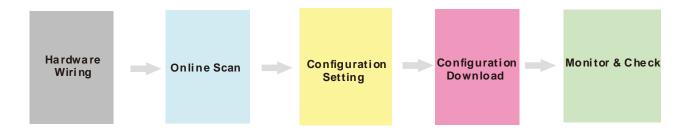
Auto Assignment	Input	Output
AS01DNET(RTU)	D26005 status word	D26105 control word
AS16AP	D26006	D26106
AS04DA	D26007~D26008	D26107~D26114
AS04AD	D26009~D26018	

The input and output mapping addresses of AS01DNET (RTU) are D26005~D26018 and D26105~D26114.

10.5.4.3.4. Status Word and Control Word of ASO1DNET (RTU)

The start input address and start output address in the mapping areas of AS01DNET (RTU) are used as the status word and control word of AS01DNET (RTU) respectively with the detailed explanation in the following table.

Control word of AS01DNET(RTU)


Bit	Status value	Description
bit0	000	Make no control setting for the operation of AS01DNET(RTU)
שונט	001	Set AS01DNET(RTU) to RUN mode
bit2	010	Set AS01DNET(RTU) to STOP mode
J.C.	Other	Reserved
bit3	0	Reserved
Dita	1	Restart AS01DNET (RTU)
bit4	0/1	Reserved
bit5	0/1	Reserved
bit6	0/1	Reserved
bit7	0/1	Reserved
bit8	0/1	Reserved
bit9	0/1	Reserved
bit10	0/1	Reserved
bit11	0/1	Reserved
bit12	0/1	Reserved
bit13	0/1	Reserved
bit14	0/1	Reserved
bit15	0/1	Reserved

Status word of AS01DNET(RTU)

Bit	Status value	Description
bit0	0	AS01DNET (RTU) in RUN state
Dito	1	AS01DNET (RTU) stops.
bit1	0/1	Reserved
bit2	0	No error occurs in I/O modules.
DILZ	1	An error occurs in I/O modules.
bit3	0/1	Reserved
bit4	0	Current connection matches the configuration.
DIL4	1	Current connection is inconsistent with the configuration.
bit5	0	AS01DNET (RTU) works normally.
Dito	1	The voltage of the power supply for AS01DNET (RTU) is too low.
bit6	0/1	Reserved
bit7	0	AS01DNET (RTU) works normally.
Diti	1	The number of points/ modules exceeds allowed range.
bit8	0/1	Reserved
bit9	0/1	Reserved
bit10	0/1	Reserved
bit11	0/1	Reserved
bit12	0/1	Reserved
bit13	0/1	Reserved
bit14	0/1	Reserved
bit15	0/1	Reserved

10.5.4.4. Connecting ASO1DNET (RTU) to the Network

To configure AS01DNET (RTU) successfully and make it work normally in the network, the following steps should be taken for the setup.

Hardware wiring

During hardware wiring, notice that the standard cable should be used and two terminal resistors of 121Ω should be connected respectively to the two ends of the main line in the DeviceNet network. The node IDs of all nodes in the network bus can not be repeated and their baud rates should be consistent.

Online scan

The online scan consists of two parts: scanning online network nodes and scanning I/O modules of AS01DNET (RTU). Before the scan, make sure that the communication channel selected is proper and the communication setup is normal in the communication manager COMMGR.

Configuration setting

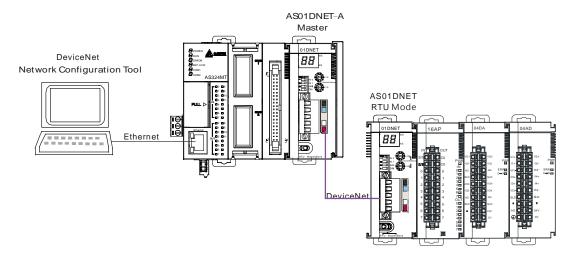
The configuration setting includes the master configuration and AS01DNET (RTU) configuration settings. The master configuration contains the master scanner module setting (configuration of master) and the scan list configuration setting. AS01DNET (RTU) configuration contains AS01DNET (RTU) setting and other I/O modules setting.

Configuration Download

Configuration download consists of master configuration download and AS01DNET (RTU) configuration download. During the master configuration download, the seven-segment displayer of AS01DNET (RTU) shows 80 and its node ID alternately. During the AS01DNET (RTU) configuration download, the seven-segment displayer of AS01DNET (RTU) shows 83 and its node ID alternately.

Monitor and Check

After the configuration is downloaded, check if AS01DNET (RTU) works normally. If AS01DNET (RTU) works normally, the digital displayers of the master and AS01DNET (RTU) show their own node IDs and MS and NS indicators are ON in green.


10.5.5 Application Example

This section describes how to configure AS01DNET (RTU) and its right-side I/O module parameters in the DeviceNet Builder software through an application example. And how the parameters of the I/O modules connected to the right side of AS01DNET (RTU) are controlled and accessed through AS01DNET master is illustrated as well.

Control Requirement:

- 1. Connect the output point of AS16AP to the input point; turn on the output point to make the input point ON.
- 2. Write one value for channel 1 of AS04DA to change into analog signal and then convert the analog signal to digital signal to output via AS04AD.

10.5.5.1. Network Structure

Note:

- 1. During the wiring, connect the voltage output of channel 1 of AS04DA to the voltage input of channel 1 of AS04AD. And add the 24 V power to AS04DA and AS04AD respectively.
- 2. Make sure that the baud rates of AS01DNET and AS01DNET (RTU) match.

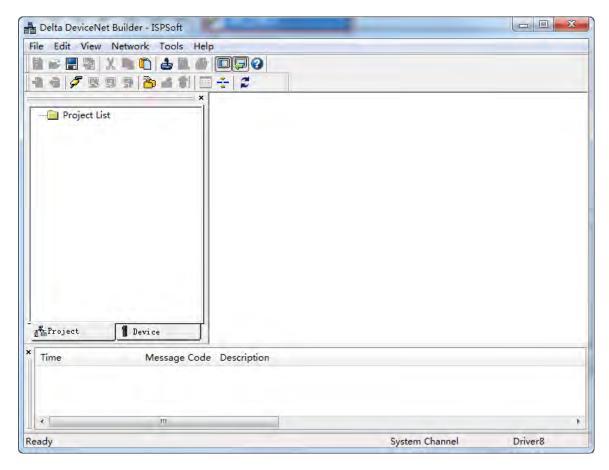
Module	Node ID	Baud rate
AS01DNET	0	500Kbps
AS01DNET(RTU)	2	500Kbps

Connect the 24V network power module between V+ and V- and a terminal resistor of 121Ω between CAN_H
and CAN_L.

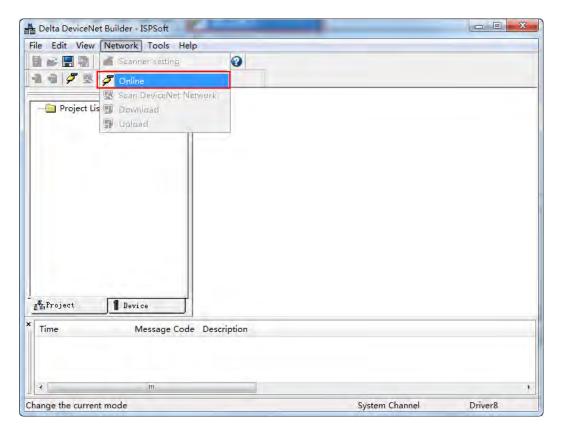
10.5.5.2. Using DeviceNet Builder to Configure the Network

10.5.5.2.1. Building and Starting up Driver1 via COMMGR

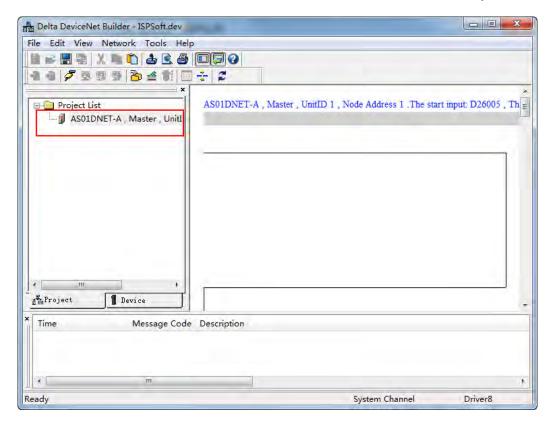
Build driver1 in the COMMGR software.

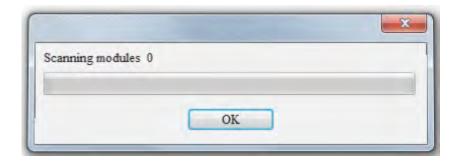

Refer to Section 2.4 Communication Setting in ISPSoft help file.

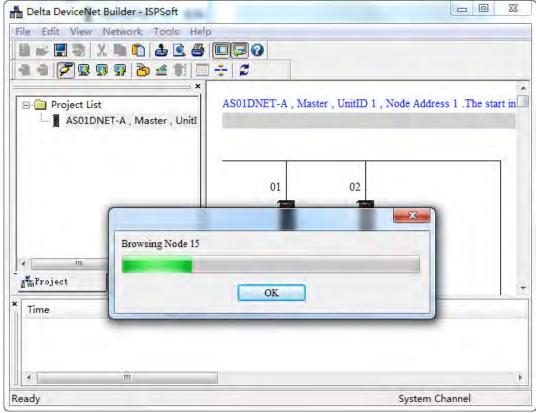
10.5.5.2.2. Configuring AS01DNET (RTU)

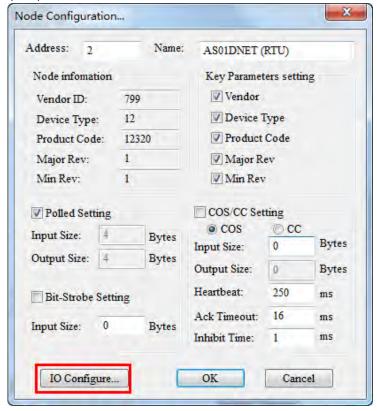

1. Call DeviceNet Builder via ISPSoft.

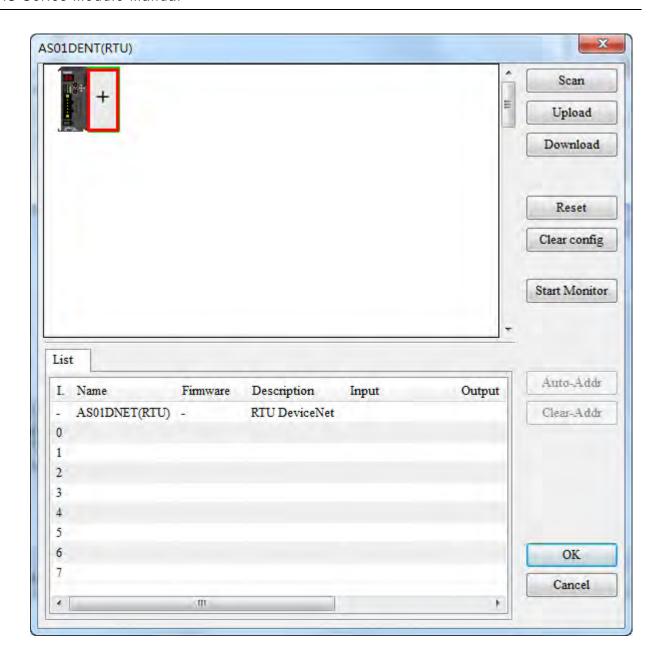
Refer to section 10.6 for details on the operation.

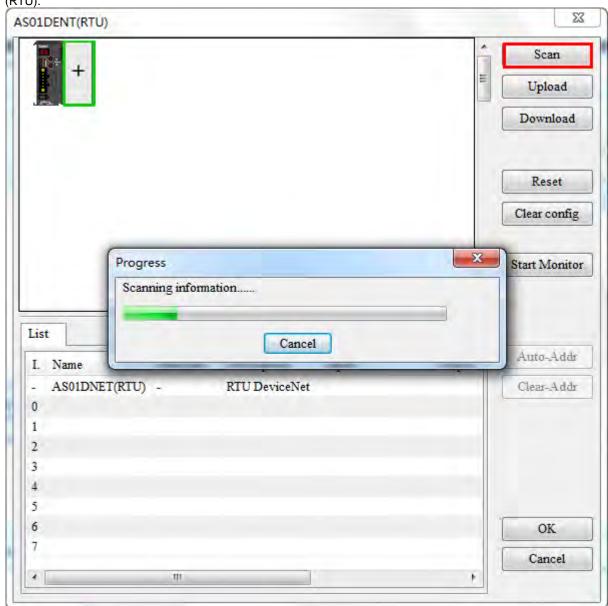

2. The called DeviceNet Builder is started as below.


3. Click menu Network>> Online.

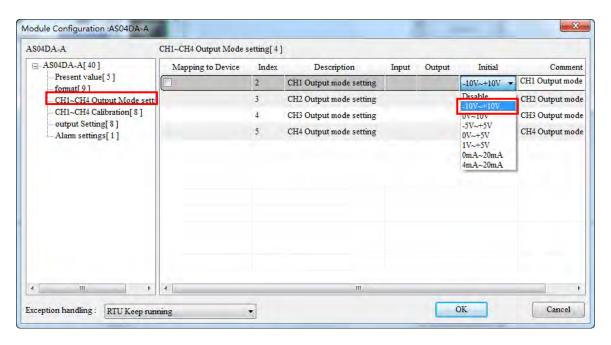

The AS01DNET-A master module which has been scanned is shown in the left-side Project List.

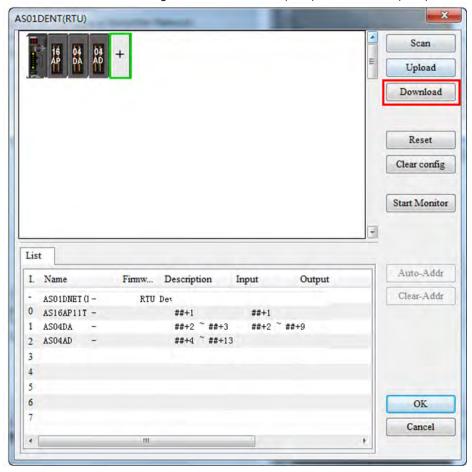

4. Click menu Network >> Scan DeviceNet Network.

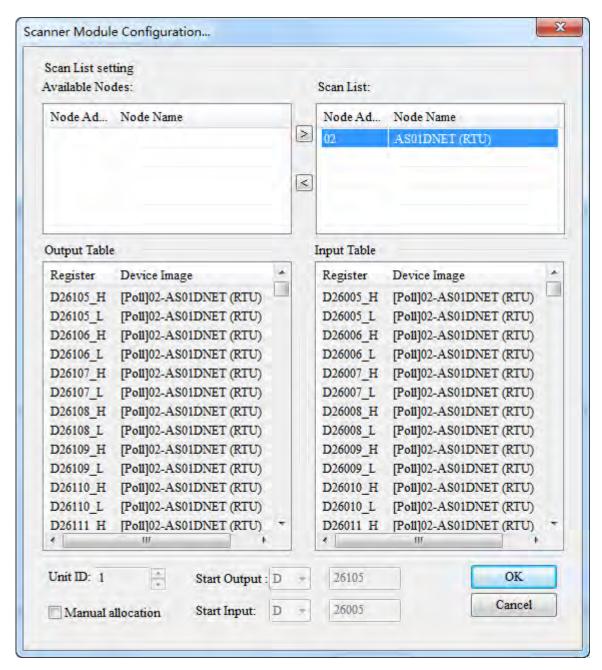




Double click AS01DNET (RTU). Then the Node Configuration... dialog box appears. Click the IO Configure... button to make the AS01RTU-DNET interface appear, where to configure the modules connected to AS01DNET (RTU).




7. Click the **Scan** button to scan the I/O modules connected to the right side of AS01DNET (RTU).


8. After the module is scanned, configure module parameters. Double click AS04DA module and select "-10V~+10V" for channel 1 mode setting. Click the **OK** button to finish the setting. Use the same setting way for channel 1 mode setting of AS04AD and set it to "-10V~+10V" as well.

9. After the configuration of modules is finished, click the **Download** button to download the configuration of I/O modules connected to the right side of AS01DNET (RTU) to AS01DNET (RTU).

10. After the download, click the OK button to go back to the main page of the software. Double click AS01DNETScanner icon and then move the slave in Available Nodes to Scan List on the Scanner Module Configuration dialog box. Click the OK button to finish the setting.

11. Click menu **Network >> Download** to download AS01DNET (RTU) configuration to the master.

The input mapping address D26005~D26018 and output mapping address D26105~D26114 are for AS01DNET (RTU). The start input address D26005 and start output address D26105 are respectively used as the status word and control word of AS01DNET (RTU). The parameter mappings of all modules connected to AS01DNET (RTU) are displayed below.

I	Name	Firmware	Desc	Input	Output
-	AS01DNET(RTU)	0.100	RTU Des		
0	AS16AP11T	-		D26006	D26106
1	AS04DA-A			D26007 ~ D26008	D26107 ~ D26114
2	AS04AD-A	-		D26009 ~ D26018	
3					
4					
5					
6					
7					
		III.			

	I/O Module	Input	Output
AS16AP		D26006	D26106-
	Status	D26007~D26008	
	Channel 1 output value		D26107~D26108
AS04DA	Channel 2 output value	-	D26109~D26110
	Channel 3 output value	-	D26111~D26112
	Channel 4 output value	-	D26113~D26114
	Status	D2609~D26010	
	Channel 1 input value	D26011~D26012	
AS04AD	Channel 2 input value	D26013~D26014	
	Channel 3 input value	D26015~D26016	
	Channel 4 input value	D26017~D26018	

Network 1 MO MOV En 16#00AA D26106=170 MOV En 20000 -D D26107=20000 Network 2 MI MOV En D26006=170-D0=170 MOV En D26011=19950 -D1=19950

10.5.5.3. Using LD Program to Control the Entire Network

Program Explanation:

- In network 1, write a value for the output of AS16AP and for the output of channel 1 of AS04DA when M0 changes to ON.
- 2. In network 2, move the input value of AS16AP to D0 and the input value of channel 1 of AS04AD to D1 when M1 changes to ON.

10.5.6 Error Diagnosis and Trouble Shooting

AS01DNET (RTU) provides four diagnosis methods such as LED indicator, seven-segment displayer, status word diagnosis and software diagnosis.

10.5.6.1. Indicator Diagnosis

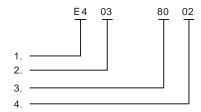
NS indicator

LED status	Indication	How to deal with
OFF	No power supply; Or the repeated node ID detection has not been completed.	 Check the power supply for AS01DNET (RTU) and the connection are normal. Make sure that the baud rates of AS01DNET (RTU) and the master match.
Green light blinking (ON:0.5s and OFF: 0.5s alternately)	No connection between AS01DNET (RTU) and its right-side modules	Configure AS01DNET (RTU) in the DeviceNet software and download the configuration correctly.
Green light ON	Normal I/O data transmission between AS01DNET (RTU) and DeviceNet master	No correction needed

LED status	Indication	How to deal with
Red light blinking (ON:0.5s and OFF: 0.5s alternately)	I/O connection timeout between AS01DNET (RTU) and DeviceNet master	Refer to the error shooting in Codes in Seven-Segment Displayer below.
Red light ON	Network trouble; Repeated node ID; No network power; Or BUS-OFF.	 Ensure that the IDs of all nodes are unique on the bus. Check if the network installation is normal. Check if the baud rate of AS01DNET (RTU) is the same as that of the bus. Check if the node ID of AS01DNET (RTU) is valid. Check if the network power supply is normal.

MS indicator

LED status	Indication	How to deal with
OFF	No power	Check if the power supply for AS01DNET (RTU) and connection are normal.
Green light blinking (ON:0.5s and OFF: 0.5s alternately)	AS01DNET (RTU) is waiting for the I/O data from DeviceNet master. No I/O data transmission between AS01DNET(RTU) and DeviceNet master The PLC connected to DeviceNet master is in STOP state.	Configure AS01DNET (RTU) in the DeviceNet software and download the configuration correctly. Switch the PLC to RUN state
Green light ON	Normal transmission of I/O data between AS01DNET (RTU) and DeviceNet master	No correction needed
Red light blinking (ON:0.5s and OFF: 0.5s alternately)	No network power supply; Configuration error; Module alarms.	 Check if the network power supply is normal; Reset the internal parameters in AS01DNET (RTU); Check if there is an error or alarm in the I/O modules connected to the right side of AS01DNET (RTU).
Red light ON	Hardware error	Return the product to factory for repair if the error still exists after re-power on.


10.5.6.2. Codes in Seven-Segment Displayer

Code	Indication	How to deal with
0~63	Node ID of the scanner module (When in RUN state)	No correction needed
F0	The node ID is repeated or exceeds allowed range.	 Ensure that the node ID of AS01DNET (RTU) is unique in the DeviceNet network within the range of 0~63. Repower it on after changing the node ID.
F1	No I/O module is configured to AS01DNET (RTU) in the DeviceNet Builder software.	Add I/O modules in AS01DNET (RTU) in the DeviceNet Builder software and download the configuration data to AS01DNET (RTU) after the configuration is finished.
F2	The work voltage of AS01DNET	Check if the power supply for AS01DNET (RTU) works

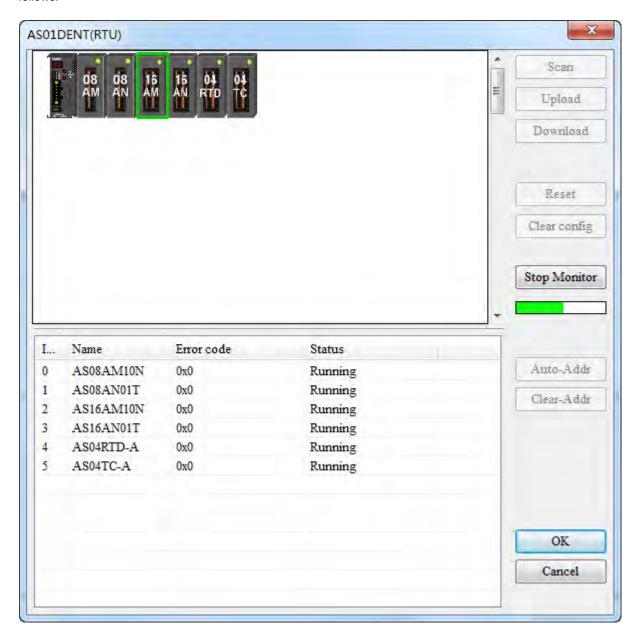
Code	Indication	How to deal with
	(RTU) is too low.	normally.
F3	AS01DNET (RTU) enters the test mode.	Repower AS01DNET (RTU).
F4	AS01DNET (RTU) is the Bus-Off state.	 Check if the network communication cable is normal and the shielded cable is grounded. Ensure the baud rates of all network nodes are same. Check if the two ends of the network are both connected with a 120Ω terminal resistor. Repower the scanner module.
F5	No network power supply for AS01DNET(RTU)	Check if the network cable is normal. Check if the network power supply is normal. (The external 24V DC network power supply is connected between red V+ and black V- of AS01DNET (RTU) .)
F6	Internal error; An error in the internal storage units of AS01DNET (RTU)	Return the product to factory for repair if the error still exists after re-power on.
F7	Internal error; An error in the data exchange units of AS01DNET (RTU)	Return the product to factory for repair if the error still exists after re-power on.
F8	Manufacture error	Return the product to factory for repair if the error still exists after re-power on.
F9	Internal error; An error in the access of the Flash of AS01DNET (RTU)	Return the product to factory for repair if the error still exists after re-power on.
E4	Module error	Check if an error occurs in the modules connected to the right side of AS01DNET (RTU); Check if the module exists; Check if current module matches that configured in the software; Check if the unconfigured module is added.
E 7	Repeated node ID detection	 If the code has emerged for a long time, please shoot troubles in the methods below. Ensure that there are at least two nodes working normally in the network. Check if the two ends of the network are both connected with a 121Ω terminal resistor. Ensure that the baud rates of all network nodes are same. Check if the network cable has a problem such as being disconnected and loosened. Check if the bus communication cable length exceeds maximum transmission distance. If the maximum transmission distance is exceeded, the stability of the system can not be ensured. Check if the shielded wire of the network communication cable is grounded. Turn on the power of AS01DNET (RTU) again.

Code	Indication	How to deal with
E9	The number of I/O modules connected to AS01DNET (RTU) exceeds the maximum 8.	Check if the number of I/O modules connected to AS01DNET (RTU) is more than 8.
80	AS01DNET (RTU) is in STOP state.	Check if the RUN/STOP switch of the PLC connected to the DeviceNet master is turned to RUN. Check if the value of control word of AS01DNET (RTU) is 1. For details, refer to section 10.5.4.3.4.
83	The AS01DNET (RTU) configuration in the software is being downloading.	Wait until the download of AS01DNET (RTU) configuration data is completed.

When multiple errors exist, the seven-segment displayer of AS01DNET (RTU) will display error codes cyclically. For example, the error codes: E4 03 80 02 are displayed cyclically. See the detailed meaning as below.

- ♦ E4 indicates a module error or offline. For details, see the explanation of codes above.
- ◆ 03 indicates the position of the module where an error occurs. The position of the first module connected to the right side of AS01DNET (RTU) is 1 and that of the second module is 2. Maximum 8 I/O modules are connectable to AS01DNET (RTU) within the range of 1~8.
- ♦ 80 means AS01DNET (RTU) is in STOP state.
- ◆ 02 is the node ID: 2 of AS01DNET (RTU).

10.5.6.3. Status Word Diagnosis


The status word of AS01DNET (RTU) shows the operation states of special modules and digital I/O modules. See the following table for status word diagnosis and disposal.

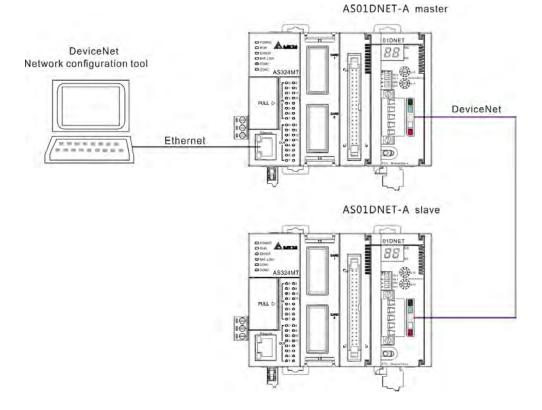
Bit	Status value	Description	Disposal
bit0	0	AS01DNET (RTU) is in RUN state	No correction needed
DILU	1	AS01DNET (RTU) is in STOP state.	Restart AS01DNET(RTU)
bit1	0	Valid configuration data in AS01DNET(RTU)	No correction needed
	1	Invalid configuration data in AS01DNET (RTU)	Re-download the configuration data to AS01DNET (RTU) by using the DeviceNet Builder software.
bit2	Reserved		
bit3	Reserved		
	0	Currently connected module matches the configuration in the software.	No correction needed
bit4	1	Currently connected module is inconsistent with the configuration in the software.	 Check if currently connected module is consistent with the configuration in the software. Change current module to match the configuration in the software or change the configuration in the software to match currently connected module.
bit5	0	AS01DNET(RTU) in normal operation	No correction needed
	1	AS01DNET(RTU) in low voltage	Check if the power supply for AS01DNET (RTU) is normal.
bit6	Reserved		

Bit	Status value	Description	Disposal
bit7	0	AS01DNET(RTU) in normal operation	No correction needed
Diti	Reserved		
bit8	Reserved		
bit9	Reserved		
bit10	Reserved		
bit11	Reserved		
bit12	Reserved		
bit13	Reserved		
bit14	Reserved		
bit15	Reserved		

10.5.6.4. Software Diagnosis

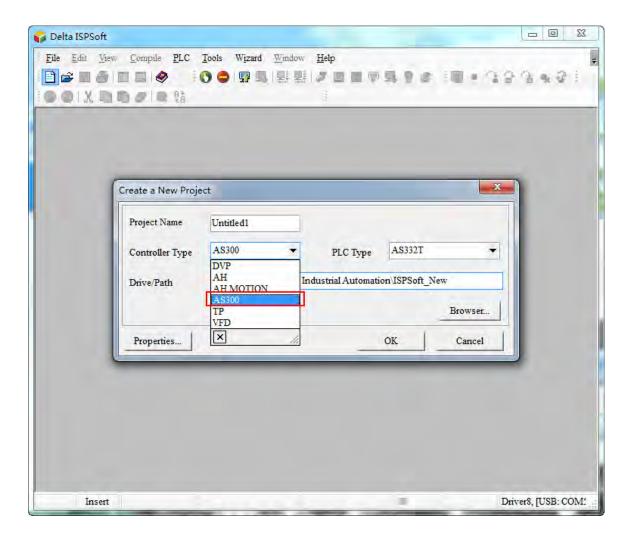
Click the **Start Monitor** button on the AS01DNET (RTU) interface. The **Error code** column will show relevant contents as follows.

Error No.	Explanation	Solution
0x8001	AS01DNET (RTU) can not	Check if the module is disconnected.
0,0001	detect the configured module.	Check if the module is damaged.
0x8002	Current module is not consistent with the configured module.	Ensure that the actually connected module is the same as that configured in the software.

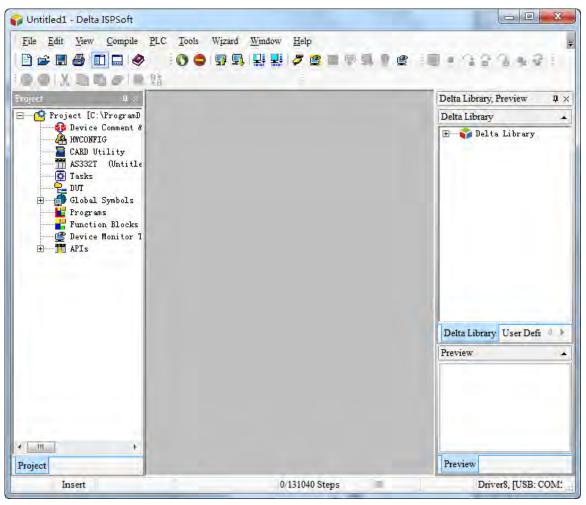

Note: For details on more error codes, refer to the explanation of Error ID in AS-series product manual. **Remark:**

> The software diagnosis function can not be enabled until the DeviceNet Builder software is online.

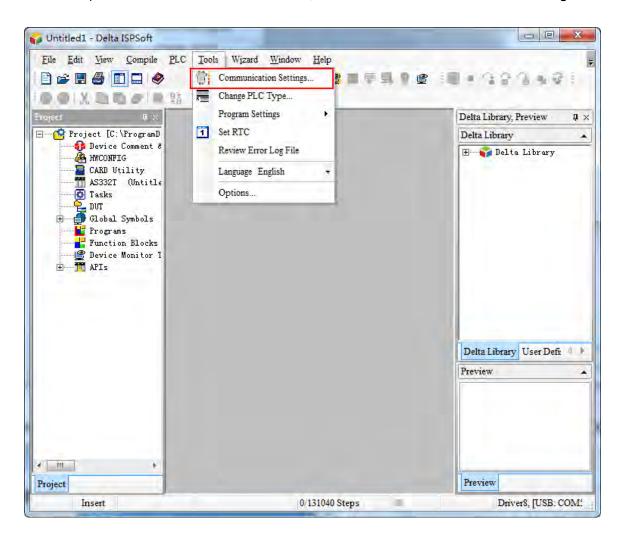
10.6 How to Call DeviceNet Builder through ISPSoft (AS-Series PLC)


Network structure

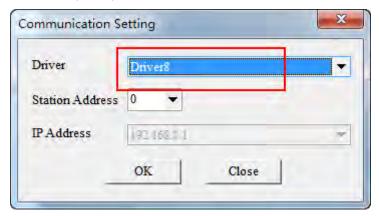
Connect the devices according to the following figure. PC accesses AS-series PLC through Ethernet.


Operation of Software

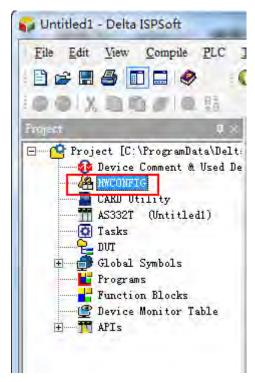
1. Open the ISPSoft software and then select menu **File>> New>> New**. In the following dialog box which appears, select corresponding PLC type **AS** marked in the red box below.

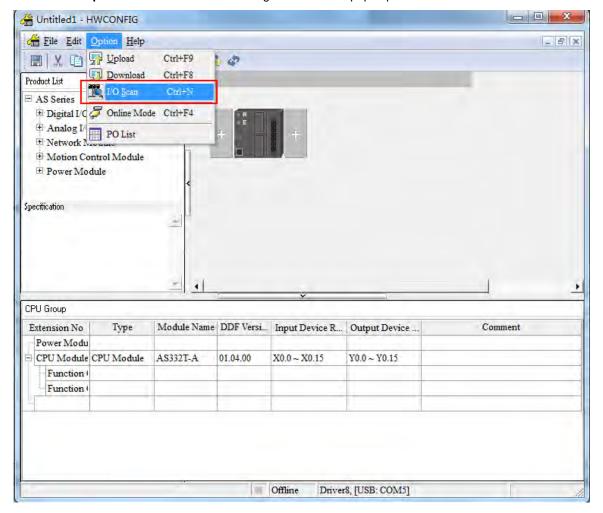

Note: The PLC type used in this section is AS332T-A.

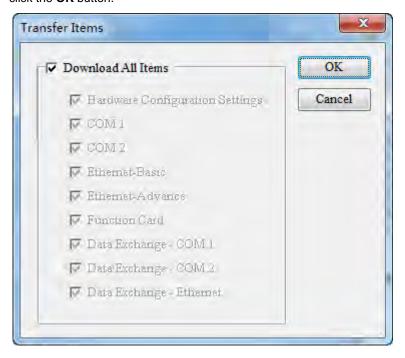
2. Click the **OK** button. Then the main interface of the ISPSoft software appears as below.

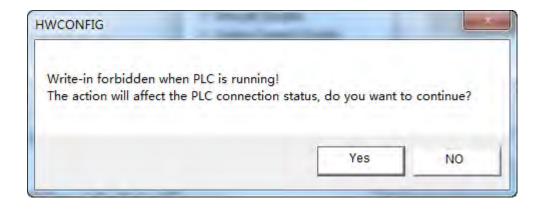


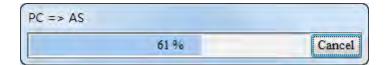
3. Set up COMMGR communication. For details on setup, refer to section 8.1.2 Overview of Communication Setting in COMMGR.


4. After the setup of COMMGR communication is finished, select menu Tools>> Communication settings...

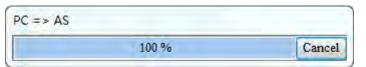

5. The following dialog box appears. Select one desired driver which has been created and then click the **OK** button.


6. Double click **HWCONFIG** marked in the red box below.

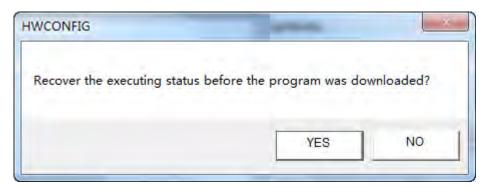

7. Select menu Option>> I/O Scan in the following window which pops up. Then the AS01DNET-5A icon will show up.



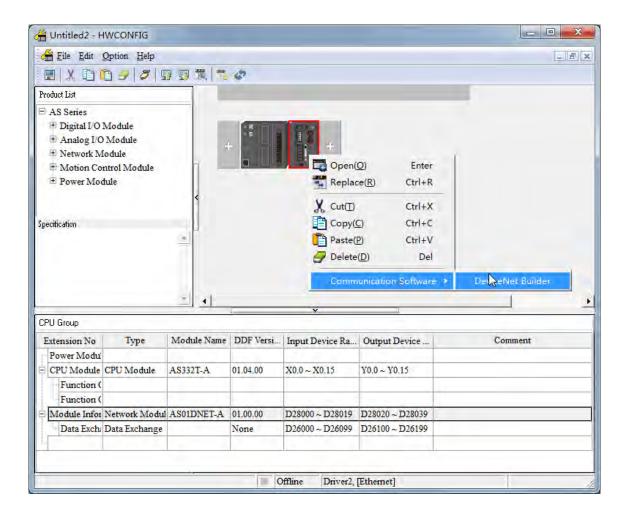
8. Select menu **Option>> Download** in the HWCONFIG window. Then the following dialog box appears. Select the checkbox of **Download All Items** or select the checkboxes of the items which are needed for download. Afterwards, click the **OK** button.



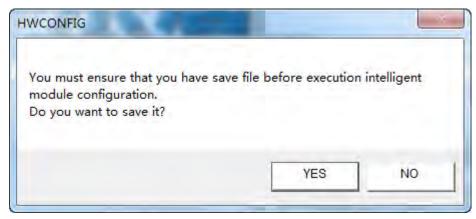
9. Then the following two dialog boxes of **HWCONFIG** and **PC=>AS** appear. Click **Yes** to perform the PC=>AS status.



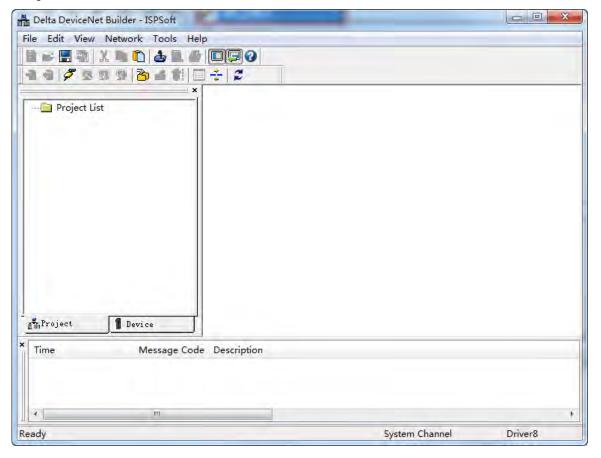
10. When the download is finished, the progress bar is shown as below.


Meanwhile the following dialog box pops out. Click the **Yes** button.

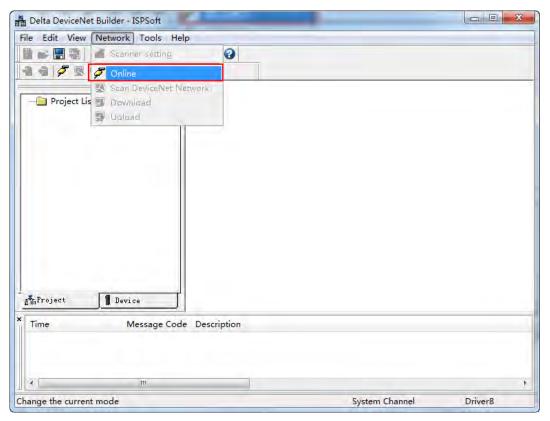
11. The following dialog box appears to show that the download has been finished.

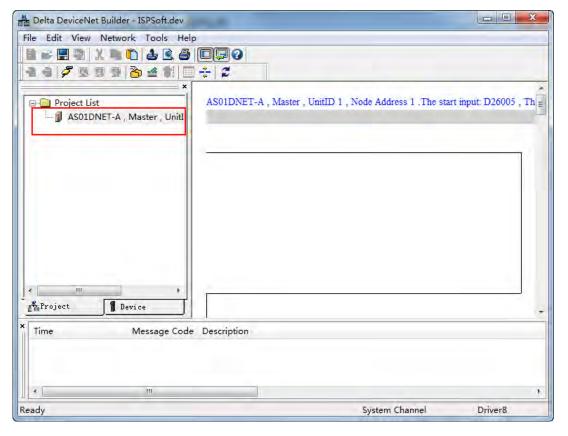


12. Return to the HWCONFIG window and right-click AS01DNET module to make the drop-down menu pop out. Select **Communication Software >> DeviceNet Builder** from the menu.

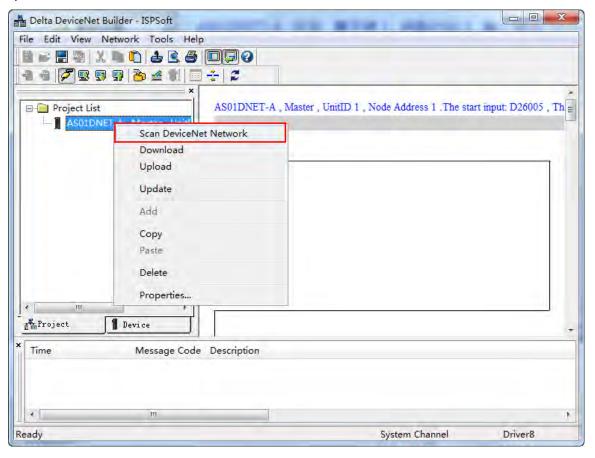


10


13. The following dialog box pops out. Click the Yes button there.

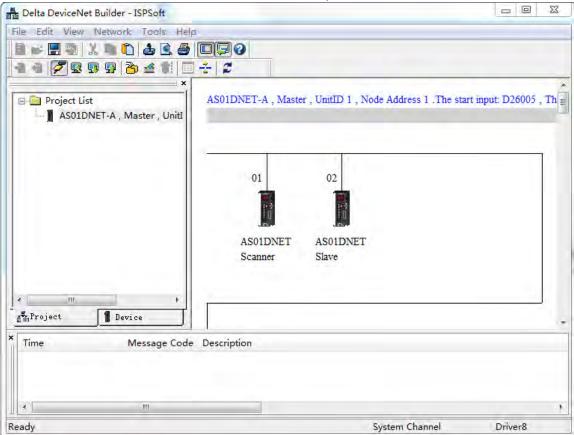

14. The DeviceNet Builder software is opened as below, which means the DeviceNet Builder software has been opened through the ISPSoft software.

15. Click menu **Network>> Online**.



16. The master module AS01DNET-A has been scanned as below.

10


17. Right-click the master module AS01DNET-A under the left-side Project List. Then a drop-down list pops up. Click the option **Scan DeviceNet Network** from the list.

18. The following progress bar appears then.

19. The master and slave which have been scanned both show up in the network.

